Predicting Evoked Emotions in Conversations
- URL: http://arxiv.org/abs/2401.00383v1
- Date: Sun, 31 Dec 2023 03:30:42 GMT
- Title: Predicting Evoked Emotions in Conversations
- Authors: Enas Altarawneh, Ameeta Agrawal, Michael Jenkin, Manos Papagelis
- Abstract summary: We introduce the novel problem of Predicting Emotions in Conversations (PEC) for the next turn (n+1)
We systematically approach the problem by modeling three dimensions inherently connected to evoked emotions in dialogues.
We perform a comprehensive empirical evaluation of the various proposed models for addressing the PEC problem.
- Score: 6.0866477571088895
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Understanding and predicting the emotional trajectory in multi-party
multi-turn conversations is of great significance. Such information can be
used, for example, to generate empathetic response in human-machine interaction
or to inform models of pre-emptive toxicity detection. In this work, we
introduce the novel problem of Predicting Emotions in Conversations (PEC) for
the next turn (n+1), given combinations of textual and/or emotion input up to
turn n. We systematically approach the problem by modeling three dimensions
inherently connected to evoked emotions in dialogues, including (i) sequence
modeling, (ii) self-dependency modeling, and (iii) recency modeling. These
modeling dimensions are then incorporated into two deep neural network
architectures, a sequence model and a graph convolutional network model. The
former is designed to capture the sequence of utterances in a dialogue, while
the latter captures the sequence of utterances and the network formation of
multi-party dialogues. We perform a comprehensive empirical evaluation of the
various proposed models for addressing the PEC problem. The results indicate
(i) the importance of the self-dependency and recency model dimensions for the
prediction task, (ii) the quality of simpler sequence models in short
dialogues, (iii) the importance of the graph neural models in improving the
predictions in long dialogues.
Related papers
- Human-Object Interaction Detection Collaborated with Large Relation-driven Diffusion Models [65.82564074712836]
We introduce DIFfusionHOI, a new HOI detector shedding light on text-to-image diffusion models.
We first devise an inversion-based strategy to learn the expression of relation patterns between humans and objects in embedding space.
These learned relation embeddings then serve as textual prompts, to steer diffusion models generate images that depict specific interactions.
arXiv Detail & Related papers (2024-10-26T12:00:33Z) - Conversation Derailment Forecasting with Graph Convolutional Networks [6.251188655534379]
We propose a novel model based on a graph convolutional neural network that considers dialogue user dynamics and the influence of public perception on conversation utterances.
Our model effectively captures conversation dynamics and outperforms the state-of-the-art models on the CGA and CMV benchmark datasets by 1.5% and 1.7%, respectively.
arXiv Detail & Related papers (2023-06-22T15:40:59Z) - Improving a sequence-to-sequence nlp model using a reinforcement
learning policy algorithm [0.0]
Current neural network models of dialogue generation show great promise for generating answers for chatty agents.
But they are short-sighted in that they predict utterances one at a time while disregarding their impact on future outcomes.
This work commemorates a preliminary step toward developing a neural conversational model based on the long-term success of dialogues.
arXiv Detail & Related papers (2022-12-28T22:46:57Z) - Learning Interpretable Latent Dialogue Actions With Less Supervision [3.42658286826597]
We present a novel architecture for explainable modeling of task-oriented dialogues with discrete latent variables.
Our model is based on variational recurrent neural networks (VRNN) and requires no explicit annotation of semantic information.
arXiv Detail & Related papers (2022-09-22T16:14:06Z) - A Probabilistic Model Of Interaction Dynamics for Dyadic Face-to-Face
Settings [1.9544213396776275]
We develop a probabilistic model to capture the interaction dynamics between pairs of participants in a face-to-face setting.
This interaction encoding is then used to influence the generation when predicting one agent's future dynamics.
We show that our model successfully delineates between the modes, based on their interacting dynamics.
arXiv Detail & Related papers (2022-07-10T23:31:27Z) - Learning Locality and Isotropy in Dialogue Modeling [28.743212772593335]
We propose a simple method for dialogue representation calibration, namely SimDRC, to build isotropic and conversational feature spaces.
Experimental results show that our approach significantly outperforms the current state-of-the-art models on three dialogue tasks.
arXiv Detail & Related papers (2022-05-29T06:48:53Z) - TCL: Transformer-based Dynamic Graph Modelling via Contrastive Learning [87.38675639186405]
We propose a novel graph neural network approach, called TCL, which deals with the dynamically-evolving graph in a continuous-time fashion.
To the best of our knowledge, this is the first attempt to apply contrastive learning to representation learning on dynamic graphs.
arXiv Detail & Related papers (2021-05-17T15:33:25Z) - I like fish, especially dolphins: Addressing Contradictions in Dialogue
Modeling [104.09033240889106]
We introduce the DialoguE COntradiction DEtection task (DECODE) and a new conversational dataset containing both human-human and human-bot contradictory dialogues.
We then compare a structured utterance-based approach of using pre-trained Transformer models for contradiction detection with the typical unstructured approach.
arXiv Detail & Related papers (2020-12-24T18:47:49Z) - Topic-Aware Multi-turn Dialogue Modeling [91.52820664879432]
This paper presents a novel solution for multi-turn dialogue modeling, which segments and extracts topic-aware utterances in an unsupervised way.
Our topic-aware modeling is implemented by a newly proposed unsupervised topic-aware segmentation algorithm and Topic-Aware Dual-attention Matching (TADAM) Network.
arXiv Detail & Related papers (2020-09-26T08:43:06Z) - Ranking Enhanced Dialogue Generation [77.8321855074999]
How to effectively utilize the dialogue history is a crucial problem in multi-turn dialogue generation.
Previous works usually employ various neural network architectures to model the history.
This paper proposes a Ranking Enhanced Dialogue generation framework.
arXiv Detail & Related papers (2020-08-13T01:49:56Z) - Modality-Balanced Models for Visual Dialogue [102.35406085738325]
The Visual Dialog task requires a model to exploit both image and conversational context information to generate the next response to the dialogue.
We show that previous joint-modality (history and image) models over-rely on and are more prone to memorizing the dialogue history.
We present methods for this integration of the two models, via ensemble and consensus dropout fusion with shared parameters.
arXiv Detail & Related papers (2020-01-17T14:57:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.