HAAQI-Net: A Non-intrusive Neural Music Audio Quality Assessment Model for Hearing Aids
- URL: http://arxiv.org/abs/2401.01145v5
- Date: Thu, 09 Jan 2025 05:14:56 GMT
- Title: HAAQI-Net: A Non-intrusive Neural Music Audio Quality Assessment Model for Hearing Aids
- Authors: Dyah A. M. G. Wisnu, Stefano Rini, Ryandhimas E. Zezario, Hsin-Min Wang, Yu Tsao,
- Abstract summary: This paper introduces HAAQI-Net, a non-intrusive deep learning-based music audio quality assessment model for hearing aid users.<n>It can predict HAAQI scores directly from music audio clips and hearing loss patterns.
- Score: 30.305000305766193
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces HAAQI-Net, a non-intrusive deep learning-based music audio quality assessment model for hearing aid users. Unlike traditional methods like the Hearing Aid Audio Quality Index (HAAQI) that require intrusive reference signal comparisons, HAAQI-Net offers a more accessible and computationally efficient alternative. By utilizing a Bidirectional Long Short-Term Memory (BLSTM) architecture with attention mechanisms and features extracted from the pre-trained BEATs model, it can predict HAAQI scores directly from music audio clips and hearing loss patterns. Experimental results demonstrate HAAQI-Net's effectiveness, achieving a Linear Correlation Coefficient (LCC) of 0.9368 , a Spearman's Rank Correlation Coefficient (SRCC) of 0.9486 , and a Mean Squared Error (MSE) of 0.0064 and inference time significantly reduces from 62.52 to 2.54 seconds. To address computational overhead, a knowledge distillation strategy was applied, reducing parameters by 75.85% and inference time by 96.46%, while maintaining strong performance (LCC: 0.9071 , SRCC: 0.9307 , MSE: 0.0091 ). To expand its capabilities, HAAQI-Net was adapted to predict subjective human scores like the Mean Opinion Score (MOS) through fine-tuning. This adaptation significantly improved prediction accuracy, validated through statistical analysis. Furthermore, the robustness of HAAQI-Net was evaluated under varying Sound Pressure Level (SPL) conditions, revealing optimal performance at a reference SPL of 65 dB, with accuracy gradually decreasing as SPL deviated from this point. The advancements in subjective score prediction, SPL robustness, and computational efficiency position HAAQI-Net as a scalable solution for music audio quality assessment in hearing aid applications, contributing to efficient and accurate models in audio signal processing and hearing aid technology.
Related papers
- $C^2$AV-TSE: Context and Confidence-aware Audio Visual Target Speaker Extraction [80.57232374640911]
We propose a model-agnostic strategy called the Mask-And-Recover (MAR)
MAR integrates both inter- and intra-modality contextual correlations to enable global inference within extraction modules.
To better target challenging parts within each sample, we introduce a Fine-grained Confidence Score (FCS) model.
arXiv Detail & Related papers (2025-04-01T13:01:30Z) - Improving Anomalous Sound Detection via Low-Rank Adaptation Fine-Tuning of Pre-Trained Audio Models [45.90037602677841]
This paper introduces a robust Anomalous Sound Detection (ASD) model that leverages audio pre-trained models.
We fine-tune these models using machine operation data, employing SpecAug as a data augmentation strategy.
Our experiments establish a new benchmark of 77.75% on the evaluation set, with a significant improvement of 6.48% compared with previous state-of-the-art (SOTA) models.
arXiv Detail & Related papers (2024-09-11T05:19:38Z) - Effects of Dataset Sampling Rate for Noise Cancellation through Deep Learning [1.024113475677323]
This research explores the use of deep neural networks (DNNs) as a superior alternative to traditional noise cancellation techniques.
The ConvTasNET network was trained on datasets such as WHAM!, LibriMix, and the MS-2023 DNS Challenge.
Models trained at higher sampling rates (48kHz) provided much better evaluation metrics against Total Harmonic Distortion (THD) and Quality Prediction For Generative Neural Speech Codecs (WARP-Q) values.
arXiv Detail & Related papers (2024-05-30T16:20:44Z) - Feature Denoising Diffusion Model for Blind Image Quality Assessment [58.5808754919597]
Blind Image Quality Assessment (BIQA) aims to evaluate image quality in line with human perception, without reference benchmarks.
Deep learning BIQA methods typically depend on using features from high-level tasks for transfer learning.
In this paper, we take an initial step towards exploring the diffusion model for feature denoising in BIQA.
arXiv Detail & Related papers (2024-01-22T13:38:24Z) - Improving Deep Attractor Network by BGRU and GMM for Speech Separation [0.0]
Deep Attractor Network (DANet) is the state-of-the-art technique in speech separation field.
In this paper, a simplified and powerful DANet model is proposed using Bidirectional Gated neural network (BGRU) instead of BLSTM.
arXiv Detail & Related papers (2023-08-07T06:26:53Z) - Speaker Diaphragm Excursion Prediction: deep attention and online
adaptation [2.8349018797311314]
This paper proposes efficient DL solutions to accurately model and predict the nonlinear excursion.
The proposed algorithm is verified in two speakers and 3 typical deployment scenarios, and $>$99% residual DC is less than 0.1 mm.
arXiv Detail & Related papers (2023-05-11T08:17:55Z) - CCATMos: Convolutional Context-aware Transformer Network for
Non-intrusive Speech Quality Assessment [12.497279501767606]
We propose a novel end-to-end model structure called Convolutional Context-Aware Transformer (CCAT) network to predict the mean opinion score (MOS) of human raters.
We evaluate our model on three MOS-annotated datasets spanning multiple languages and distortion types and submit our results to the ConferencingSpeech 2022 Challenge.
arXiv Detail & Related papers (2022-11-04T16:46:11Z) - Unified End-to-End Speech Recognition and Endpointing for Fast and
Efficient Speech Systems [17.160006765475988]
We propose a method to jointly train the ASR and EP tasks in a single end-to-end (E2E) model.
We introduce a "switch" connection, which trains the EP to consume either the audio frames directly or low-level latent representations from the ASR model.
This results in a single E2E model that can be used during inference to perform frame filtering at low cost.
arXiv Detail & Related papers (2022-11-01T23:43:15Z) - Application of Knowledge Distillation to Multi-task Speech
Representation Learning [2.0908300719428228]
Speech representation learning models use a large number of parameters, the smallest version of which has 95 million parameters.
In this paper, we investigate the application of knowledge distillation to speech representation learning models followed by fine-tuning.
Our approach results in nearly 75% reduction in model size while suffering only 0.1% accuracy and 0.9% equal error rate degradation.
arXiv Detail & Related papers (2022-10-29T14:22:43Z) - An Experimental Study on Private Aggregation of Teacher Ensemble
Learning for End-to-End Speech Recognition [51.232523987916636]
Differential privacy (DP) is one data protection avenue to safeguard user information used for training deep models by imposing noisy distortion on privacy data.
In this work, we extend PATE learning to work with dynamic patterns, namely speech, and perform one very first experimental study on ASR to avoid acoustic data leakage.
arXiv Detail & Related papers (2022-10-11T16:55:54Z) - Efficient acoustic feature transformation in mismatched environments
using a Guided-GAN [1.495380389108477]
We propose a new framework to improve automatic speech recognition systems in resource-scarce environments.
We use a generative adversarial network (GAN) operating on acoustic input features to enhance the features of mismatched data.
With less than one hour of data, an ASR system trained on good quality data, and evaluated on mismatched audio is improved by between 11.5% and 19.7% relative word error rate (WER)
arXiv Detail & Related papers (2022-10-03T05:33:28Z) - On-the-Fly Feature Based Rapid Speaker Adaptation for Dysarthric and
Elderly Speech Recognition [53.17176024917725]
Scarcity of speaker-level data limits the practical use of data-intensive model based speaker adaptation methods.
This paper proposes two novel forms of data-efficient, feature-based on-the-fly speaker adaptation methods.
arXiv Detail & Related papers (2022-03-28T09:12:24Z) - A Conformer Based Acoustic Model for Robust Automatic Speech Recognition [63.242128956046024]
The proposed model builds on a state-of-the-art recognition system using a bi-directional long short-term memory (BLSTM) model with utterance-wise dropout and iterative speaker adaptation.
The Conformer encoder uses a convolution-augmented attention mechanism for acoustic modeling.
The proposed system is evaluated on the monaural ASR task of the CHiME-4 corpus.
arXiv Detail & Related papers (2022-03-01T20:17:31Z) - HASA-net: A non-intrusive hearing-aid speech assessment network [52.83357278948373]
We propose a DNN-based hearing aid speech assessment network (HASA-Net) to predict speech quality and intelligibility scores simultaneously.
To the best of our knowledge, HASA-Net is the first work to incorporate quality and intelligibility assessments utilizing a unified DNN-based non-intrusive model for hearing aids.
Experimental results show that the predicted speech quality and intelligibility scores of HASA-Net are highly correlated to two well-known intrusive hearing-aid evaluation metrics.
arXiv Detail & Related papers (2021-11-10T14:10:13Z) - Deep Learning-based Non-Intrusive Multi-Objective Speech Assessment Model with Cross-Domain Features [31.59528815233441]
We propose a cross-domain multi-objective speech assessment model called MOSA-Net, which can estimate multiple speech assessment metrics simultaneously.
Experimental results show that MOSA-Net can improve the linear correlation coefficient (LCC) by 0.026 (0.990 vs 0.964 in seen noise environments) and 0.012 (0.969 vs 0.957 in unseen noise environments) in perceptual evaluation of speech quality (PESQ) prediction.
arXiv Detail & Related papers (2021-11-03T17:30:43Z) - Time-domain Speech Enhancement with Generative Adversarial Learning [53.74228907273269]
This paper proposes a new framework called Time-domain Speech Enhancement Generative Adversarial Network (TSEGAN)
TSEGAN is an extension of the generative adversarial network (GAN) in time-domain with metric evaluation to mitigate the scaling problem.
In addition, we provide a new method based on objective function mapping for the theoretical analysis of the performance of Metric GAN.
arXiv Detail & Related papers (2021-03-30T08:09:49Z) - Automatic Estimation of Intelligibility Measure for Consonants in Speech [44.02658023314131]
We train regression models based on Convolutional Neural Networks (CNN) for stop consonants.
We estimate the corresponding Signal to Noise Ratio (SNR) at which the Consonant-Vowel (CV) sound becomes intelligible for Normal Hearing (NH) ears.
arXiv Detail & Related papers (2020-05-12T21:45:20Z) - Towards a Competitive End-to-End Speech Recognition for CHiME-6 Dinner
Party Transcription [73.66530509749305]
In this paper, we argue that, even in difficult cases, some end-to-end approaches show performance close to the hybrid baseline.
We experimentally compare and analyze CTC-Attention versus RNN-Transducer approaches along with RNN versus Transformer architectures.
Our best end-to-end model based on RNN-Transducer, together with improved beam search, reaches quality by only 3.8% WER abs. worse than the LF-MMI TDNN-F CHiME-6 Challenge baseline.
arXiv Detail & Related papers (2020-04-22T19:08:33Z) - Characterizing Speech Adversarial Examples Using Self-Attention U-Net
Enhancement [102.48582597586233]
We present a U-Net based attention model, U-Net$_At$, to enhance adversarial speech signals.
We conduct experiments on the automatic speech recognition (ASR) task with adversarial audio attacks.
arXiv Detail & Related papers (2020-03-31T02:16:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.