Incorporating Geo-Diverse Knowledge into Prompting for Increased Geographical Robustness in Object Recognition
- URL: http://arxiv.org/abs/2401.01482v2
- Date: Fri, 29 Mar 2024 18:52:59 GMT
- Title: Incorporating Geo-Diverse Knowledge into Prompting for Increased Geographical Robustness in Object Recognition
- Authors: Kyle Buettner, Sina Malakouti, Xiang Lorraine Li, Adriana Kovashka,
- Abstract summary: We investigate the feasibility of probing a large language model for geography-based object knowledge.
We propose geography knowledge regularization to ensure that soft prompts trained on a source set of geographies generalize to an unseen target set.
Accuracy gains over prompting baselines on DollarStreet are up to +2.8/1.2/1.6 on target data from Africa/Asia/Americas, and +4.6 overall on the hardest classes.
- Score: 24.701574433327746
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing object recognition models have been shown to lack robustness in diverse geographical scenarios due to domain shifts in design and context. Class representations need to be adapted to more accurately reflect an object concept under these shifts. In the absence of training data from target geographies, we hypothesize that geographically diverse descriptive knowledge of categories can enhance robustness. For this purpose, we explore the feasibility of probing a large language model for geography-based object knowledge, and we examine the effects of integrating knowledge into zero-shot and learnable soft prompting with CLIP. Within this exploration, we propose geography knowledge regularization to ensure that soft prompts trained on a source set of geographies generalize to an unseen target set. Accuracy gains over prompting baselines on DollarStreet while training only on Europe data are up to +2.8/1.2/1.6 on target data from Africa/Asia/Americas, and +4.6 overall on the hardest classes. Competitive performance is shown vs. few-shot target training, and analysis is provided to direct future study of geographical robustness.
Related papers
- Image-Based Geolocation Using Large Vision-Language Models [19.071551941682063]
We introduce tool, an innovative framework that significantly enhances image-based geolocation accuracy.
tool employs a systematic chain-of-thought (CoT) approach, mimicking human geoguessing strategies.
It achieves an impressive average score of 4550.5 in the GeoGuessr game, with an 85.37% win rate, and delivers highly precise geolocation predictions.
arXiv Detail & Related papers (2024-08-18T13:39:43Z) - Geo-Encoder: A Chunk-Argument Bi-Encoder Framework for Chinese
Geographic Re-Ranking [61.60169764507917]
Chinese geographic re-ranking task aims to find the most relevant addresses among retrieved candidates.
We propose an innovative framework, namely Geo-Encoder, to more effectively integrate Chinese geographical semantics into re-ranking pipelines.
arXiv Detail & Related papers (2023-09-04T13:44:50Z) - GeoGLUE: A GeoGraphic Language Understanding Evaluation Benchmark [56.08664336835741]
We propose a GeoGraphic Language Understanding Evaluation benchmark, named GeoGLUE.
We collect data from open-released geographic resources and introduce six natural language understanding tasks.
We pro vide evaluation experiments and analysis of general baselines, indicating the effectiveness and significance of the GeoGLUE benchmark.
arXiv Detail & Related papers (2023-05-11T03:21:56Z) - GeoNet: Benchmarking Unsupervised Adaptation across Geographies [71.23141626803287]
We study the problem of geographic robustness and make three main contributions.
First, we introduce a large-scale dataset GeoNet for geographic adaptation.
Second, we hypothesize that the major source of domain shifts arise from significant variations in scene context.
Third, we conduct an extensive evaluation of several state-of-the-art unsupervised domain adaptation algorithms and architectures.
arXiv Detail & Related papers (2023-03-27T17:59:34Z) - GIVL: Improving Geographical Inclusivity of Vision-Language Models with
Pre-Training Methods [62.076647211744564]
We propose GIVL, a Geographically Inclusive Vision-and-Language Pre-trained model.
There are two attributes of geo-diverse visual concepts which can help to learn geo-diverse knowledge: 1) concepts under similar categories have unique knowledge and visual characteristics, 2) concepts with similar visual features may fall in completely different categories.
Compared with similar-size models pre-trained with similar scale of data, GIVL achieves state-of-the-art (SOTA) and more balanced performance on geo-diverse V&L tasks.
arXiv Detail & Related papers (2023-01-05T03:43:45Z) - Conditioning Covert Geo-Location (CGL) Detection on Semantic Class
Information [5.660207256468971]
Task for identification of potential hideouts termed Covert Geo-Location (CCGL) detection was proposed by Saha et al.
No attempts were made to utilize semantic class information, which is crucial for obscured detection.
In this paper, we propose a multitask-learning-based approach to achieve 2 goals - i) extraction of features having semantic class information; ii) robust training of the common encoder, exploiting large standard annotated datasets as training set for the auxiliary task (semantic segmentation).
arXiv Detail & Related papers (2022-11-27T07:21:59Z) - Geographic Adaptation of Pretrained Language Models [29.81557992080902]
We introduce geoadaptation, an intermediate training step that couples language modeling with geolocation prediction in a multi-task learning setup.
We show that the effectiveness of geoadaptation stems from its ability to geographically retrofit the representation space of the pretrained language models.
arXiv Detail & Related papers (2022-03-16T11:55:00Z) - Point-Level Region Contrast for Object Detection Pre-Training [147.47349344401806]
We present point-level region contrast, a self-supervised pre-training approach for the task of object detection.
Our approach performs contrastive learning by directly sampling individual point pairs from different regions.
Compared to an aggregated representation per region, our approach is more robust to the change in input region quality.
arXiv Detail & Related papers (2022-02-09T18:56:41Z) - Interpretable Semantic Photo Geolocalization [4.286838964398275]
We present two contributions in order to improve the interpretability of a geolocalization model.
We propose a novel, semantic partitioning method which intuitively leads to an improved understanding of the predictions.
We also introduce a novel metric to assess the importance of semantic visual concepts for a certain prediction.
arXiv Detail & Related papers (2021-04-30T13:28:18Z) - PGL: Prior-Guided Local Self-supervised Learning for 3D Medical Image
Segmentation [87.50205728818601]
We propose a PriorGuided Local (PGL) self-supervised model that learns the region-wise local consistency in the latent feature space.
Our PGL model learns the distinctive representations of local regions, and hence is able to retain structural information.
arXiv Detail & Related papers (2020-11-25T11:03:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.