SIGNeRF: Scene Integrated Generation for Neural Radiance Fields
- URL: http://arxiv.org/abs/2401.01647v2
- Date: Wed, 27 Mar 2024 09:39:41 GMT
- Title: SIGNeRF: Scene Integrated Generation for Neural Radiance Fields
- Authors: Jan-Niklas Dihlmann, Andreas Engelhardt, Hendrik Lensch,
- Abstract summary: We propose a novel approach for fast and controllable NeRF scene editing and scene-integrated object generation.
A new generative update strategy ensures 3D consistency across the edited images, without requiring iterative optimization.
By exploiting the depth conditioning mechanism of the image diffusion model, we gain fine control over the spatial location of the edit.
- Score: 1.1037667460077816
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Advances in image diffusion models have recently led to notable improvements in the generation of high-quality images. In combination with Neural Radiance Fields (NeRFs), they enabled new opportunities in 3D generation. However, most generative 3D approaches are object-centric and applying them to editing existing photorealistic scenes is not trivial. We propose SIGNeRF, a novel approach for fast and controllable NeRF scene editing and scene-integrated object generation. A new generative update strategy ensures 3D consistency across the edited images, without requiring iterative optimization. We find that depth-conditioned diffusion models inherently possess the capability to generate 3D consistent views by requesting a grid of images instead of single views. Based on these insights, we introduce a multi-view reference sheet of modified images. Our method updates an image collection consistently based on the reference sheet and refines the original NeRF with the newly generated image set in one go. By exploiting the depth conditioning mechanism of the image diffusion model, we gain fine control over the spatial location of the edit and enforce shape guidance by a selected region or an external mesh.
Related papers
- NovelGS: Consistent Novel-view Denoising via Large Gaussian Reconstruction Model [57.92709692193132]
NovelGS is a diffusion model for Gaussian Splatting given sparse-view images.
We leverage the novel view denoising through a transformer-based network to generate 3D Gaussians.
arXiv Detail & Related papers (2024-11-25T07:57:17Z) - Diffusion Models are Geometry Critics: Single Image 3D Editing Using Pre-Trained Diffusion Priors [24.478875248825563]
We propose a novel image editing technique that enables 3D manipulations on single images.
Our method directly leverages powerful image diffusion models trained on a broad spectrum of text-image pairs.
Our method can generate high-quality 3D-aware image edits with large viewpoint transformations and high appearance and shape consistency with the input image.
arXiv Detail & Related papers (2024-03-18T06:18:59Z) - 3D-SceneDreamer: Text-Driven 3D-Consistent Scene Generation [51.64796781728106]
We propose a generative refinement network to synthesize new contents with higher quality by exploiting the natural image prior to 2D diffusion model and the global 3D information of the current scene.
Our approach supports wide variety of scene generation and arbitrary camera trajectories with improved visual quality and 3D consistency.
arXiv Detail & Related papers (2024-03-14T14:31:22Z) - Denoising Diffusion via Image-Based Rendering [54.20828696348574]
We introduce the first diffusion model able to perform fast, detailed reconstruction and generation of real-world 3D scenes.
First, we introduce a new neural scene representation, IB-planes, that can efficiently and accurately represent large 3D scenes.
Second, we propose a denoising-diffusion framework to learn a prior over this novel 3D scene representation, using only 2D images.
arXiv Detail & Related papers (2024-02-05T19:00:45Z) - GO-NeRF: Generating Virtual Objects in Neural Radiance Fields [75.13534508391852]
GO-NeRF is capable of utilizing scene context for high-quality and harmonious 3D object generation within an existing NeRF.
Our method employs a compositional rendering formulation that allows the generated 3D objects to be seamlessly composited into the scene.
arXiv Detail & Related papers (2024-01-11T08:58:13Z) - Inpaint4DNeRF: Promptable Spatio-Temporal NeRF Inpainting with
Generative Diffusion Models [59.96172701917538]
Current Neural Radiance Fields (NeRF) can generate photorealistic novel views.
This paper proposes Inpaint4DNeRF to capitalize on state-of-the-art stable diffusion models.
arXiv Detail & Related papers (2023-12-30T11:26:55Z) - RePaint-NeRF: NeRF Editting via Semantic Masks and Diffusion Models [36.236190350126826]
We propose a novel framework that can take RGB images as input and alter the 3D content in neural scenes.
Specifically, we semantically select the target object and a pre-trained diffusion model will guide the NeRF model to generate new 3D objects.
Experiment results show that our algorithm is effective for editing 3D objects in NeRF under different text prompts.
arXiv Detail & Related papers (2023-06-09T04:49:31Z) - ZIGNeRF: Zero-shot 3D Scene Representation with Invertible Generative
Neural Radiance Fields [2.458437232470188]
We introduce ZIGNeRF, an innovative model that executes zero-shot Generative Adrial Network (GAN)versa for the generation of multi-view images from a single out-of-domain image.
ZIGNeRF is capable of disentangling the object from the background and executing 3D operations such as 360-degree rotation or depth and horizontal translation.
arXiv Detail & Related papers (2023-06-05T09:41:51Z) - Single-Stage Diffusion NeRF: A Unified Approach to 3D Generation and
Reconstruction [77.69363640021503]
3D-aware image synthesis encompasses a variety of tasks, such as scene generation and novel view synthesis from images.
We present SSDNeRF, a unified approach that employs an expressive diffusion model to learn a generalizable prior of neural radiance fields (NeRF) from multi-view images of diverse objects.
arXiv Detail & Related papers (2023-04-13T17:59:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.