VGA: Vision and Graph Fused Attention Network for Rumor Detection
- URL: http://arxiv.org/abs/2401.01759v1
- Date: Wed, 3 Jan 2024 14:24:02 GMT
- Title: VGA: Vision and Graph Fused Attention Network for Rumor Detection
- Authors: Lin Bai, Caiyan Jia, Ziying Song, and Chaoqun Cui
- Abstract summary: We propose a novel Vision and Graph Fused Attention Network (VGA) for rumor detection to utilize propagation structures among posts.
We conduct extensive experiments on three datasets, demonstrating that VGA can effectively detect multimodal rumors and outperform state-of-the-art methods significantly.
- Score: 4.9312905996391665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the development of social media, rumors have been spread broadly on
social media platforms, causing great harm to society. Beside textual
information, many rumors also use manipulated images or conceal textual
information within images to deceive people and avoid being detected, making
multimodal rumor detection be a critical problem. The majority of multimodal
rumor detection methods mainly concentrate on extracting features of source
claims and their corresponding images, while ignoring the comments of rumors
and their propagation structures. These comments and structures imply the
wisdom of crowds and are proved to be crucial to debunk rumors. Moreover, these
methods usually only extract visual features in a basic manner, seldom consider
tampering or textual information in images. Therefore, in this study, we
propose a novel Vision and Graph Fused Attention Network (VGA) for rumor
detection to utilize propagation structures among posts so as to obtain the
crowd opinions and further explore visual tampering features, as well as the
textual information hidden in images. We conduct extensive experiments on three
datasets, demonstrating that VGA can effectively detect multimodal rumors and
outperform state-of-the-art methods significantly.
Related papers
- Be Yourself: Bounded Attention for Multi-Subject Text-to-Image Generation [60.943159830780154]
We introduce Bounded Attention, a training-free method for bounding the information flow in the sampling process.
We demonstrate that our method empowers the generation of multiple subjects that better align with given prompts and layouts.
arXiv Detail & Related papers (2024-03-25T17:52:07Z) - Inconsistent Matters: A Knowledge-guided Dual-consistency Network for
Multi-modal Rumor Detection [53.48346699224921]
A novel Knowledge-guided Dualconsistency Network is proposed to detect rumors with multimedia contents.
It uses two consistency detectionworks to capture the inconsistency at the cross-modal level and the content-knowledge level simultaneously.
It also enables robust multi-modal representation learning under different missing visual modality conditions.
arXiv Detail & Related papers (2023-06-03T15:32:20Z) - Fighting Malicious Media Data: A Survey on Tampering Detection and
Deepfake Detection [115.83992775004043]
Recent advances in deep learning, particularly deep generative models, open the doors for producing perceptually convincing images and videos at a low cost.
This paper provides a comprehensive review of the current media tampering detection approaches, and discusses the challenges and trends in this field for future research.
arXiv Detail & Related papers (2022-12-12T02:54:08Z) - Exploring Graph-aware Multi-View Fusion for Rumor Detection on Social
Media [23.231289922442414]
We propose a novel multi-view fusion framework for rumor representation learning and classification.
It encodes the multiple views based on Graph Convolutional Networks (GCN) and leverages Convolutional Neural Networks (CNN)
Experimental results on two public datasets demonstrate that our method outperforms state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-08T13:27:43Z) - Research Status of Deep Learning Methods for Rumor Detection [2.8837214828894435]
This paper analyzes the research status of rumor detection from three perspectives: Feature Selection, Model Structure, and Research Methods.
This work summarizes 30 works into 7 rumor detection methods such as propagation trees, adversarial learning, cross-domain methods, multi-task learning, unsupervised and semi-supervised methods, based knowledge graph, and other methods for the first time.
arXiv Detail & Related papers (2022-04-25T10:21:23Z) - Rumor Detection with Self-supervised Learning on Texts and Social Graph [101.94546286960642]
We propose contrastive self-supervised learning on heterogeneous information sources, so as to reveal their relations and characterize rumors better.
We term this framework as Self-supervised Rumor Detection (SRD)
Extensive experiments on three real-world datasets validate the effectiveness of SRD for automatic rumor detection on social media.
arXiv Detail & Related papers (2022-04-19T12:10:03Z) - Calling to CNN-LSTM for Rumor Detection: A Deep Multi-channel Model for
Message Veracity Classification in Microblogs [0.0]
Rumors can notably cause severe damage on individuals and the society.
Most rumor detection approaches focus on rumor feature analysis and social features.
DeepMONITOR is based on deep neural networks and allows quite accurate automated rumor verification.
arXiv Detail & Related papers (2021-10-11T07:42:41Z) - MONITOR: A Multimodal Fusion Framework to Assess Message Veracity in
Social Networks [0.0]
Users of social networks tend to post and share content with little restraint.
Rumors and fake news can quickly spread on a huge scale.
This may pose a threat to the credibility of social media and can cause serious consequences in real life.
arXiv Detail & Related papers (2021-09-06T07:41:21Z) - Cross-Media Keyphrase Prediction: A Unified Framework with
Multi-Modality Multi-Head Attention and Image Wordings [63.79979145520512]
We explore the joint effects of texts and images in predicting the keyphrases for a multimedia post.
We propose a novel Multi-Modality Multi-Head Attention (M3H-Att) to capture the intricate cross-media interactions.
Our model significantly outperforms the previous state of the art based on traditional attention networks.
arXiv Detail & Related papers (2020-11-03T08:44:18Z) - Heterogeneous Graph Attention Networks for Early Detection of Rumors on
Twitter [9.358510255345676]
False rumors on social media can bring about the panic of the public and damage personal reputation.
We construct a tweet-word-user heterogeneous graph based on the text contents and the source tweet propagations of rumors.
arXiv Detail & Related papers (2020-06-10T14:49:08Z) - Rumor Detection on Social Media with Bi-Directional Graph Convolutional
Networks [89.13567439679709]
We propose a novel bi-directional graph model, named Bi-Directional Graph Convolutional Networks (Bi-GCN), to explore both characteristics by operating on both top-down and bottom-up propagation of rumors.
It leverages a GCN with a top-down directed graph of rumor spreading to learn the patterns of rumor propagation, and a GCN with an opposite directed graph of rumor diffusion to capture the structures of rumor dispersion.
arXiv Detail & Related papers (2020-01-17T15:12:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.