Multilingual Instruction Tuning With Just a Pinch of Multilinguality
- URL: http://arxiv.org/abs/2401.01854v4
- Date: Tue, 21 May 2024 09:19:33 GMT
- Title: Multilingual Instruction Tuning With Just a Pinch of Multilinguality
- Authors: Uri Shaham, Jonathan Herzig, Roee Aharoni, Idan Szpektor, Reut Tsarfaty, Matan Eyal,
- Abstract summary: We show that many languages transfer some instruction-following capabilities to other languages from even monolingual tuning.
We observe that models tuned on multilingual mixtures exhibit comparable or superior performance in multiple languages.
diversifying the instruction tuning set with even just 2-4 languages significantly improves cross-lingual generalization.
- Score: 31.360147312195068
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As instruction-tuned large language models (LLMs) gain global adoption, their ability to follow instructions in multiple languages becomes increasingly crucial. In this work, we investigate how multilinguality during instruction tuning of a multilingual LLM affects instruction-following across languages from the pre-training corpus. We first show that many languages transfer some instruction-following capabilities to other languages from even monolingual tuning. Furthermore, we find that only 40 multilingual examples integrated in an English tuning set substantially improve multilingual instruction-following, both in seen and unseen languages during tuning. In general, we observe that models tuned on multilingual mixtures exhibit comparable or superior performance in multiple languages compared to monolingually tuned models, despite training on 10x fewer examples in those languages. Finally, we find that diversifying the instruction tuning set with even just 2-4 languages significantly improves cross-lingual generalization. Our results suggest that building massively multilingual instruction-tuned models can be done with only a very small set of multilingual instruction-responses.
Related papers
- Linguistically-Informed Multilingual Instruction Tuning: Is There an Optimal Set of Languages to Tune? [0.0]
This study proposes a method to select languages for instruction tuning in a linguistically informed way.
We use a simple algorithm to choose diverse languages and test their effectiveness on various benchmarks and open-ended questions.
Our results show that this careful selection generally leads to better outcomes than choosing languages at random.
arXiv Detail & Related papers (2024-10-10T10:57:24Z) - Getting More from Less: Large Language Models are Good Spontaneous Multilingual Learners [67.85635044939836]
Large Language Models (LLMs) have shown impressive language capabilities.
In this work, we investigate the spontaneous multilingual alignment improvement of LLMs.
We find that LLMs instruction-tuned on the question translation data (i.e. without annotated answers) are able to encourage the alignment between English and a wide range of languages.
arXiv Detail & Related papers (2024-05-22T16:46:19Z) - Investigating Multilingual Instruction-Tuning: Do Polyglot Models Demand for Multilingual Instructions? [42.37657013017192]
We show that instruction-tuning on parallel instead of monolingual corpora benefits cross-lingual instruction following capabilities by up to 9.9%.
We also conduct a human annotation study to understand the alignment between human-based and GPT-4-based evaluation within multilingual chat scenarios.
arXiv Detail & Related papers (2024-02-21T11:07:07Z) - Eliciting the Translation Ability of Large Language Models via Multilingual Finetuning with Translation Instructions [68.01449013641532]
Large-scale Pretrained Language Models (LLMs) have shown strong abilities in multilingual translations.
We present a detailed analysis by finetuning a multilingual pretrained language model, XGLM-7B, to perform multilingual translation.
arXiv Detail & Related papers (2023-05-24T12:00:24Z) - Multilingual BERT has an accent: Evaluating English influences on
fluency in multilingual models [23.62852626011989]
We show that grammatical structures in higher-resource languages bleed into lower-resource languages.
We show this bias via a novel method for comparing the fluency of multilingual models to the fluency of monolingual Spanish and Greek models.
arXiv Detail & Related papers (2022-10-11T17:06:38Z) - Discovering Representation Sprachbund For Multilingual Pre-Training [139.05668687865688]
We generate language representation from multilingual pre-trained models and conduct linguistic analysis.
We cluster all the target languages into multiple groups and name each group as a representation sprachbund.
Experiments are conducted on cross-lingual benchmarks and significant improvements are achieved compared to strong baselines.
arXiv Detail & Related papers (2021-09-01T09:32:06Z) - Are Multilingual Models Effective in Code-Switching? [57.78477547424949]
We study the effectiveness of multilingual language models to understand their capability and adaptability to the mixed-language setting.
Our findings suggest that pre-trained multilingual models do not necessarily guarantee high-quality representations on code-switching.
arXiv Detail & Related papers (2021-03-24T16:20:02Z) - How Good is Your Tokenizer? On the Monolingual Performance of
Multilingual Language Models [96.32118305166412]
We study a set of nine typologically diverse languages with readily available pretrained monolingual models on a set of five diverse monolingual downstream tasks.
We find that languages which are adequately represented in the multilingual model's vocabulary exhibit negligible performance decreases over their monolingual counterparts.
arXiv Detail & Related papers (2020-12-31T14:11:00Z) - Multilingual Translation with Extensible Multilingual Pretraining and
Finetuning [77.33262578776291]
Previous work has demonstrated that machine translation systems can be created by finetuning on bitext.
We show that multilingual translation models can be created through multilingual finetuning.
We demonstrate that pretrained models can be extended to incorporate additional languages without loss of performance.
arXiv Detail & Related papers (2020-08-02T05:36:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.