LEAP-VO: Long-term Effective Any Point Tracking for Visual Odometry
- URL: http://arxiv.org/abs/2401.01887v2
- Date: Wed, 12 Jun 2024 15:36:12 GMT
- Title: LEAP-VO: Long-term Effective Any Point Tracking for Visual Odometry
- Authors: Weirong Chen, Le Chen, Rui Wang, Marc Pollefeys,
- Abstract summary: We present the Long-term Effective Any Point Tracking (LEAP) module.
LEAP innovatively combines visual, inter-track, and temporal cues with mindfully selected anchors for dynamic track estimation.
Based on these traits, we develop LEAP-VO, a robust visual odometry system adept at handling occlusions and dynamic scenes.
- Score: 52.131996528655094
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visual odometry estimates the motion of a moving camera based on visual input. Existing methods, mostly focusing on two-view point tracking, often ignore the rich temporal context in the image sequence, thereby overlooking the global motion patterns and providing no assessment of the full trajectory reliability. These shortcomings hinder performance in scenarios with occlusion, dynamic objects, and low-texture areas. To address these challenges, we present the Long-term Effective Any Point Tracking (LEAP) module. LEAP innovatively combines visual, inter-track, and temporal cues with mindfully selected anchors for dynamic track estimation. Moreover, LEAP's temporal probabilistic formulation integrates distribution updates into a learnable iterative refinement module to reason about point-wise uncertainty. Based on these traits, we develop LEAP-VO, a robust visual odometry system adept at handling occlusions and dynamic scenes. Our mindful integration showcases a novel practice by employing long-term point tracking as the front-end. Extensive experiments demonstrate that the proposed pipeline significantly outperforms existing baselines across various visual odometry benchmarks.
Related papers
- Cyclic Refiner: Object-Aware Temporal Representation Learning for Multi-View 3D Detection and Tracking [37.186306646752975]
We propose a unified object-aware temporal learning framework for multi-view 3D detection and tracking tasks.
The proposed model achieves consistent performance gains over baselines of different designs.
arXiv Detail & Related papers (2024-07-03T16:10:19Z) - ACTrack: Adding Spatio-Temporal Condition for Visual Object Tracking [0.5371337604556311]
Efficiently modeling-temporal relations of objects is a key challenge in visual object tracking (VOT)
Existing methods track by appearance-based similarity or long-term relation modeling, resulting in rich temporal contexts between consecutive frames being easily overlooked.
In this paper we present ACTrack, a new framework with additive pre-temporal tracking framework with large memory conditions. It preserves the quality and capabilities of the pre-trained backbone by freezing its parameters, and makes a trainable lightweight additive net to model temporal relations in tracking.
We design an additive siamese convolutional network to ensure the integrity of spatial features and temporal sequence
arXiv Detail & Related papers (2024-02-27T07:34:08Z) - Learning Monocular Depth in Dynamic Environment via Context-aware
Temporal Attention [9.837958401514141]
We present CTA-Depth, a Context-aware Temporal Attention guided network for multi-frame monocular Depth estimation.
Our approach achieves significant improvements over state-of-the-art approaches on three benchmark datasets.
arXiv Detail & Related papers (2023-05-12T11:48:32Z) - Unsupervised Learning Optical Flow in Multi-frame Dynamic Environment
Using Temporal Dynamic Modeling [7.111443975103329]
In this paper, we explore the optical flow estimation from multiple-frame sequences of dynamic scenes.
We use motion priors of the adjacent frames to provide more reliable supervision of the occluded regions.
Experiments on KITTI 2012, KITTI 2015, Sintel Clean, and Sintel Final datasets demonstrate the effectiveness of our methods.
arXiv Detail & Related papers (2023-04-14T14:32:02Z) - MotionTrack: Learning Robust Short-term and Long-term Motions for
Multi-Object Tracking [56.92165669843006]
We propose MotionTrack, which learns robust short-term and long-term motions in a unified framework to associate trajectories from a short to long range.
For dense crowds, we design a novel Interaction Module to learn interaction-aware motions from short-term trajectories, which can estimate the complex movement of each target.
For extreme occlusions, we build a novel Refind Module to learn reliable long-term motions from the target's history trajectory, which can link the interrupted trajectory with its corresponding detection.
arXiv Detail & Related papers (2023-03-18T12:38:33Z) - Modeling Continuous Motion for 3D Point Cloud Object Tracking [54.48716096286417]
This paper presents a novel approach that views each tracklet as a continuous stream.
At each timestamp, only the current frame is fed into the network to interact with multi-frame historical features stored in a memory bank.
To enhance the utilization of multi-frame features for robust tracking, a contrastive sequence enhancement strategy is proposed.
arXiv Detail & Related papers (2023-03-14T02:58:27Z) - Continuity-Discrimination Convolutional Neural Network for Visual Object
Tracking [150.51667609413312]
This paper proposes a novel model, named Continuity-Discrimination Convolutional Neural Network (CD-CNN) for visual object tracking.
To address this problem, CD-CNN models temporal appearance continuity based on the idea of temporal slowness.
In order to alleviate inaccurate target localization and drifting, we propose a novel notion, object-centroid.
arXiv Detail & Related papers (2021-04-18T06:35:03Z) - Learning to Track with Object Permanence [61.36492084090744]
We introduce an end-to-end trainable approach for joint object detection and tracking.
Our model, trained jointly on synthetic and real data, outperforms the state of the art on KITTI, and MOT17 datasets.
arXiv Detail & Related papers (2021-03-26T04:43:04Z) - Robust Ego and Object 6-DoF Motion Estimation and Tracking [5.162070820801102]
This paper proposes a robust solution to achieve accurate estimation and consistent track-ability for dynamic multi-body visual odometry.
A compact and effective framework is proposed leveraging recent advances in semantic instance-level segmentation and accurate optical flow estimation.
A novel formulation, jointly optimizing SE(3) motion and optical flow is introduced that improves the quality of the tracked points and the motion estimation accuracy.
arXiv Detail & Related papers (2020-07-28T05:12:56Z) - Object Tracking through Residual and Dense LSTMs [67.98948222599849]
Deep learning-based trackers based on LSTMs (Long Short-Term Memory) recurrent neural networks have emerged as a powerful alternative.
DenseLSTMs outperform Residual and regular LSTM, and offer a higher resilience to nuisances.
Our case study supports the adoption of residual-based RNNs for enhancing the robustness of other trackers.
arXiv Detail & Related papers (2020-06-22T08:20:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.