State Derivative Normalization for Continuous-Time Deep Neural Networks
- URL: http://arxiv.org/abs/2401.02902v2
- Date: Tue, 14 May 2024 12:50:16 GMT
- Title: State Derivative Normalization for Continuous-Time Deep Neural Networks
- Authors: Jonas Weigand, Gerben I. Beintema, Jonas Ulmen, Daniel Görges, Roland Tóth, Maarten Schoukens, Martin Ruskowski,
- Abstract summary: In this contribution, we show that these three normalization tasks are inherently coupled.
We propose a solution to all three normalization challenges by introducing a normalization constant at the state derivative level.
- Score: 3.19246787432138
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The importance of proper data normalization for deep neural networks is well known. However, in continuous-time state-space model estimation, it has been observed that improper normalization of either the hidden state or hidden state derivative of the model estimate, or even of the time interval can lead to numerical and optimization challenges with deep learning based methods. This results in a reduced model quality. In this contribution, we show that these three normalization tasks are inherently coupled. Due to the existence of this coupling, we propose a solution to all three normalization challenges by introducing a normalization constant at the state derivative level. We show that the appropriate choice of the normalization constant is related to the dynamics of the to-be-identified system and we derive multiple methods of obtaining an effective normalization constant. We compare and discuss all the normalization strategies on a benchmark problem based on experimental data from a cascaded tanks system and compare our results with other methods of the identification literature.
Related papers
- Bayesian Renormalization [68.8204255655161]
We present a fully information theoretic approach to renormalization inspired by Bayesian statistical inference.
The main insight of Bayesian Renormalization is that the Fisher metric defines a correlation length that plays the role of an emergent RG scale.
We provide insight into how the Bayesian Renormalization scheme relates to existing methods for data compression and data generation.
arXiv Detail & Related papers (2023-05-17T18:00:28Z) - Training Normalizing Flows from Dependent Data [31.42053454078623]
We propose a likelihood objective of normalizing flows incorporating dependencies between the data points.
We show that respecting dependencies between observations can improve empirical results on both synthetic and real-world data.
arXiv Detail & Related papers (2022-09-29T16:50:34Z) - Breaking Time Invariance: Assorted-Time Normalization for RNNs [5.229616140749998]
We propose a normalization method called Assorted-Time Normalization (ATN)
ATN preserves information from multiple consecutive time steps and normalizes using them.
Our experiments applying ATN to LN demonstrate consistent improvement on various tasks.
arXiv Detail & Related papers (2022-09-28T21:51:13Z) - Continuous-Time Modeling of Counterfactual Outcomes Using Neural
Controlled Differential Equations [84.42837346400151]
Estimating counterfactual outcomes over time has the potential to unlock personalized healthcare.
Existing causal inference approaches consider regular, discrete-time intervals between observations and treatment decisions.
We propose a controllable simulation environment based on a model of tumor growth for a range of scenarios.
arXiv Detail & Related papers (2022-06-16T17:15:15Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
We investigate and compare the performance of several local and global smoothing techniques to a priori denoise the state measurements.
We show that, in general, global methods, which use the entire measurement data set, outperform local methods, which employ a neighboring data subset around a local point.
arXiv Detail & Related papers (2022-01-29T23:31:25Z) - Benign Overfitting of Constant-Stepsize SGD for Linear Regression [122.70478935214128]
inductive biases are central in preventing overfitting empirically.
This work considers this issue in arguably the most basic setting: constant-stepsize SGD for linear regression.
We reflect on a number of notable differences between the algorithmic regularization afforded by (unregularized) SGD in comparison to ordinary least squares.
arXiv Detail & Related papers (2021-03-23T17:15:53Z) - Squared $\ell_2$ Norm as Consistency Loss for Leveraging Augmented Data
to Learn Robust and Invariant Representations [76.85274970052762]
Regularizing distance between embeddings/representations of original samples and augmented counterparts is a popular technique for improving robustness of neural networks.
In this paper, we explore these various regularization choices, seeking to provide a general understanding of how we should regularize the embeddings.
We show that the generic approach we identified (squared $ell$ regularized augmentation) outperforms several recent methods, which are each specially designed for one task.
arXiv Detail & Related papers (2020-11-25T22:40:09Z) - Normalization Techniques in Training DNNs: Methodology, Analysis and
Application [111.82265258916397]
Normalization techniques are essential for accelerating the training and improving the generalization of deep neural networks (DNNs)
This paper reviews and comments on the past, present and future of normalization methods in the context of training.
arXiv Detail & Related papers (2020-09-27T13:06:52Z) - SODEN: A Scalable Continuous-Time Survival Model through Ordinary
Differential Equation Networks [14.564168076456822]
We propose a flexible model for survival analysis using neural networks along with scalable optimization algorithms.
We demonstrate the effectiveness of the proposed method in comparison to existing state-of-the-art deep learning survival analysis models.
arXiv Detail & Related papers (2020-08-19T19:11:25Z) - Density Fixing: Simple yet Effective Regularization Method based on the
Class Prior [2.3859169601259347]
We propose a framework of regularization methods, called density-fixing, that can be used commonly for supervised and semi-supervised learning.
Our proposed regularization method improves the generalization performance by forcing the model to approximate the class's prior distribution or the frequency of occurrence.
arXiv Detail & Related papers (2020-07-08T04:58:22Z) - Anomaly Detection in Trajectory Data with Normalizing Flows [0.0]
We propose an approach based on normalizing flows that enables complex density estimation from data with neural networks.
Our proposal computes exact model likelihood values, an important feature of normalizing flows, for each segment of the trajectory.
We evaluate our methodology, named aggregated anomaly detection with normalizing flows (GRADINGS), using real world trajectory data and compare it with more traditional anomaly detection techniques.
arXiv Detail & Related papers (2020-04-13T14:16:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.