Introducing Bode: A Fine-Tuned Large Language Model for Portuguese
Prompt-Based Task
- URL: http://arxiv.org/abs/2401.02909v1
- Date: Fri, 5 Jan 2024 17:15:01 GMT
- Title: Introducing Bode: A Fine-Tuned Large Language Model for Portuguese
Prompt-Based Task
- Authors: Gabriel Lino Garcia, Pedro Henrique Paiola, Luis Henrique Morelli,
Giovani Candido, Arnaldo C\^andido J\'unior, Danilo Samuel Jodas, Luis C. S.
Afonso, Ivan Rizzo Guilherme, Bruno Elias Penteado, Jo\~ao Paulo Papa
- Abstract summary: This work proposes a fine-tuned LLaMA 2-based model for Portuguese prompts named Bode.
We evaluate the performance of this model in classification tasks using the zero-shot approach with in-context learning.
- Score: 1.158680734110387
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) are increasingly bringing advances to Natural
Language Processing. However, low-resource languages, those lacking extensive
prominence in datasets for various NLP tasks, or where existing datasets are
not as substantial, such as Portuguese, already obtain several benefits from
LLMs, but not to the same extent. LLMs trained on multilingual datasets
normally struggle to respond to prompts in Portuguese satisfactorily,
presenting, for example, code switching in their responses. This work proposes
a fine-tuned LLaMA 2-based model for Portuguese prompts named Bode in two
versions: 7B and 13B. We evaluate the performance of this model in
classification tasks using the zero-shot approach with in-context learning, and
compare it with other LLMs. Our main contribution is to bring an LLM with
satisfactory results in the Portuguese language, as well as to provide a model
that is free for research or commercial purposes.
Related papers
- Think Carefully and Check Again! Meta-Generation Unlocking LLMs for Low-Resource Cross-Lingual Summarization [108.6908427615402]
Cross-lingual summarization ( CLS) aims to generate a summary for the source text in a different target language.
Currently, instruction-tuned large language models (LLMs) excel at various English tasks.
Recent studies have shown that LLMs' performance on CLS tasks remains unsatisfactory even with few-shot settings.
arXiv Detail & Related papers (2024-10-26T00:39:44Z) - Leveraging Open-Source Large Language Models for Native Language Identification [1.6267479602370543]
Native Language Identification (NLI) has applications in forensics, marketing, and second language acquisition.
This study explores the potential of using open-source generative large language models (LLMs) for NLI.
arXiv Detail & Related papers (2024-09-15T08:14:18Z) - Multilingual Prompts in LLM-Based Recommenders: Performance Across Languages [0.0]
This work explores the impact of non-English prompts on recommendation performance.
Evaluation on three real-world datasets, namely ML1M, LastFM, and Amazon-Beauty, showed that usage of non-English prompts generally reduce performance.
Retraining with multilingual prompts resulted in more balanced performance across languages, but slightly reduced English performance.
arXiv Detail & Related papers (2024-09-11T20:31:42Z) - A Survey of Large Language Models for European Languages [4.328283741894074]
Large Language Models (LLMs) have gained significant attention due to their high performance on a wide range of natural language tasks.
We present an overview of LLM families, including LLaMA, PaLM, GPT, and MoE.
We provide a comprehensive summary of common monolingual and multilingual datasets used for pretraining large language models.
arXiv Detail & Related papers (2024-08-27T13:10:05Z) - Zero-Shot Cross-Lingual Reranking with Large Language Models for
Low-Resource Languages [51.301942056881146]
We investigate how large language models (LLMs) function as rerankers in cross-lingual information retrieval systems for African languages.
Our implementation covers English and four African languages (Hausa, Somali, Swahili, and Yoruba)
We examine cross-lingual reranking with queries in English and passages in the African languages.
arXiv Detail & Related papers (2023-12-26T18:38:54Z) - CulturaX: A Cleaned, Enormous, and Multilingual Dataset for Large
Language Models in 167 Languages [86.90220551111096]
Training datasets for large language models (LLMs) are often not fully disclosed.
We present CulturaX, a substantial multilingual dataset with 6.3 trillion tokens in 167 languages.
arXiv Detail & Related papers (2023-09-17T23:49:10Z) - Okapi: Instruction-tuned Large Language Models in Multiple Languages
with Reinforcement Learning from Human Feedback [61.83548032416181]
We present Okapi, the first system with instruction-tuned LLMs based on RLHF for multiple languages.
Okapi introduces instruction and response-ranked data in 26 diverse languages to facilitate the experiments and development of future multilingual LLM research.
arXiv Detail & Related papers (2023-07-29T18:01:46Z) - PolyLM: An Open Source Polyglot Large Language Model [57.64420154135178]
We present PolyLM, a multilingual large language model (LLMs) trained on 640 billion (B) tokens, avaliable in two model sizes: 1.7B and 13B.
To enhance its multilingual capabilities, we 1) integrate bilingual data into training data; and 2) adopt a curriculum learning strategy that increases the proportion of non-English data from 30% in the first stage to 60% in the final stage during pre-training.
Further, we propose a multilingual self-instruct method which automatically generates 132.7K diverse multilingual instructions for model fine-tuning.
arXiv Detail & Related papers (2023-07-12T09:00:37Z) - Democratizing LLMs for Low-Resource Languages by Leveraging their English Dominant Abilities with Linguistically-Diverse Prompts [75.33019401706188]
Large language models (LLMs) are known to effectively perform tasks by simply observing few exemplars.
We propose to assemble synthetic exemplars from a diverse set of high-resource languages to prompt the LLMs to translate from any language into English.
Our unsupervised prompting method performs on par with supervised few-shot learning in LLMs of different sizes for translations between English and 13 Indic and 21 African low-resource languages.
arXiv Detail & Related papers (2023-06-20T08:27:47Z) - llm-japanese-dataset v0: Construction of Japanese Chat Dataset for Large
Language Models and its Methodology [4.396516562723691]
This study constructed a Japanese chat dataset for tuning large language models (LLMs), which consist of about 8.4 million records.
The results suggest that our dataset is possibly beneficial for LLMs.
However, we also revealed some difficulties in constructing LLMs in languages other than English.
arXiv Detail & Related papers (2023-05-22T04:59:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.