Are we describing the same sound? An analysis of word embedding spaces
of expressive piano performance
- URL: http://arxiv.org/abs/2401.02979v1
- Date: Sun, 31 Dec 2023 12:20:03 GMT
- Title: Are we describing the same sound? An analysis of word embedding spaces
of expressive piano performance
- Authors: Silvan David Peter, Shreyan Chowdhury, Carlos Eduardo
Cancino-Chac\'on, Gerhard Widmer
- Abstract summary: We investigate the uncertainty for the domain of characterizations of expressive piano performance.
We test five embedding models and their similarity structure for correspondence with the ground truth.
The quality of embedding models shows great variability with respect to this task.
- Score: 4.867952721052875
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Semantic embeddings play a crucial role in natural language-based information
retrieval. Embedding models represent words and contexts as vectors whose
spatial configuration is derived from the distribution of words in large text
corpora. While such representations are generally very powerful, they might
fail to account for fine-grained domain-specific nuances. In this article, we
investigate this uncertainty for the domain of characterizations of expressive
piano performance. Using a music research dataset of free text performance
characterizations and a follow-up study sorting the annotations into clusters,
we derive a ground truth for a domain-specific semantic similarity structure.
We test five embedding models and their similarity structure for correspondence
with the ground truth. We further assess the effects of contextualizing
prompts, hubness reduction, cross-modal similarity, and k-means clustering. The
quality of embedding models shows great variability with respect to this task;
more general models perform better than domain-adapted ones and the best model
configurations reach human-level agreement.
Related papers
- CAST: Corpus-Aware Self-similarity Enhanced Topic modelling [16.562349140796115]
We introduce CAST: Corpus-Aware Self-similarity Enhanced Topic modelling, a novel topic modelling method.
We find self-similarity to be an effective metric to prevent functional words from acting as candidate topic words.
Our approach significantly enhances the coherence and diversity of generated topics, as well as the topic model's ability to handle noisy data.
arXiv Detail & Related papers (2024-10-19T15:27:11Z) - How Well Do Text Embedding Models Understand Syntax? [50.440590035493074]
The ability of text embedding models to generalize across a wide range of syntactic contexts remains under-explored.
Our findings reveal that existing text embedding models have not sufficiently addressed these syntactic understanding challenges.
We propose strategies to augment the generalization ability of text embedding models in diverse syntactic scenarios.
arXiv Detail & Related papers (2023-11-14T08:51:00Z) - Tragic and Comical Networks. Clustering Dramatic Genres According to
Structural Properties [0.0]
A growing tradition in the joint field of network studies and drama history produces interpretations from the character networks of the plays.
Our aim is to create a method that is able to cluster texts with similar structures on the basis of the play's well-interpretable and simple properties.
Finding these features is the most important part of our research, as well as establishing the appropriate statistical procedure to calculate the similarities between the texts.
arXiv Detail & Related papers (2023-02-16T12:36:16Z) - Domain-Specific Word Embeddings with Structure Prediction [3.057136788672694]
We present an empirical evaluation on New York Times articles and two English Wikipedia datasets with articles on science and philosophy.
Our method, called Word2Vec with Structure Prediction (W2VPred), provides better performance than baselines in terms of the general analogy tests.
As a use case in the field of Digital Humanities we demonstrate how to raise novel research questions for high literature from the German Text Archive.
arXiv Detail & Related papers (2022-10-06T12:45:48Z) - Efficient Multi-Modal Embeddings from Structured Data [0.0]
Multi-modal word semantics aims to enhance embeddings with perceptual input.
Visual grounding can contribute to linguistic applications as well.
New embedding conveys complementary information for text based embeddings.
arXiv Detail & Related papers (2021-10-06T08:42:09Z) - Image Synthesis via Semantic Composition [74.68191130898805]
We present a novel approach to synthesize realistic images based on their semantic layouts.
It hypothesizes that for objects with similar appearance, they share similar representation.
Our method establishes dependencies between regions according to their appearance correlation, yielding both spatially variant and associated representations.
arXiv Detail & Related papers (2021-09-15T02:26:07Z) - Exploring Set Similarity for Dense Self-supervised Representation
Learning [96.35286140203407]
We propose to explore textbfset textbfsimilarity (SetSim) for dense self-supervised representation learning.
We generalize pixel-wise similarity learning to set-wise one to improve the robustness because sets contain more semantic and structure information.
Specifically, by resorting to attentional features of views, we establish corresponding sets, thus filtering out noisy backgrounds that may cause incorrect correspondences.
arXiv Detail & Related papers (2021-07-19T09:38:27Z) - Sentiment analysis in tweets: an assessment study from classical to
modern text representation models [59.107260266206445]
Short texts published on Twitter have earned significant attention as a rich source of information.
Their inherent characteristics, such as the informal, and noisy linguistic style, remain challenging to many natural language processing (NLP) tasks.
This study fulfils an assessment of existing language models in distinguishing the sentiment expressed in tweets by using a rich collection of 22 datasets.
arXiv Detail & Related papers (2021-05-29T21:05:28Z) - Grounded Compositional Outputs for Adaptive Language Modeling [59.02706635250856]
A language model's vocabulary$-$typically selected before training and permanently fixed later$-$affects its size.
We propose a fully compositional output embedding layer for language models.
To our knowledge, the result is the first word-level language model with a size that does not depend on the training vocabulary.
arXiv Detail & Related papers (2020-09-24T07:21:14Z) - A Comparative Study on Structural and Semantic Properties of Sentence
Embeddings [77.34726150561087]
We propose a set of experiments using a widely-used large-scale data set for relation extraction.
We show that different embedding spaces have different degrees of strength for the structural and semantic properties.
These results provide useful information for developing embedding-based relation extraction methods.
arXiv Detail & Related papers (2020-09-23T15:45:32Z) - Comparative Analysis of Word Embeddings for Capturing Word Similarities [0.0]
Distributed language representation has become the most widely used technique for language representation in various natural language processing tasks.
Most of the natural language processing models that are based on deep learning techniques use already pre-trained distributed word representations, commonly called word embeddings.
selecting the appropriate word embeddings is a perplexing task since the projected embedding space is not intuitive to humans.
arXiv Detail & Related papers (2020-05-08T01:16:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.