PosDiffNet: Positional Neural Diffusion for Point Cloud Registration in
a Large Field of View with Perturbations
- URL: http://arxiv.org/abs/2401.03167v1
- Date: Sat, 6 Jan 2024 08:58:15 GMT
- Title: PosDiffNet: Positional Neural Diffusion for Point Cloud Registration in
a Large Field of View with Perturbations
- Authors: Rui She, Sijie Wang, Qiyu Kang, Kai Zhao, Yang Song, Wee Peng Tay,
Tianyu Geng, Xingchao Jian
- Abstract summary: PosDiffNet is a model for point cloud registration in 3D computer vision.
We leverage a graph neural partial differential equation (PDE) based on Beltrami flow to obtain high-dimensional features.
We employ the multi-level correspondence derived from the high feature similarity scores to facilitate alignment between point clouds.
We evaluate PosDiffNet on several 3D point cloud datasets, verifying that it achieves state-of-the-art (SOTA) performance for point cloud registration in large fields of view with perturbations.
- Score: 27.45001809414096
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Point cloud registration is a crucial technique in 3D computer vision with a
wide range of applications. However, this task can be challenging, particularly
in large fields of view with dynamic objects, environmental noise, or other
perturbations. To address this challenge, we propose a model called PosDiffNet.
Our approach performs hierarchical registration based on window-level,
patch-level, and point-level correspondence. We leverage a graph neural partial
differential equation (PDE) based on Beltrami flow to obtain high-dimensional
features and position embeddings for point clouds. We incorporate position
embeddings into a Transformer module based on a neural ordinary differential
equation (ODE) to efficiently represent patches within points. We employ the
multi-level correspondence derived from the high feature similarity scores to
facilitate alignment between point clouds. Subsequently, we use registration
methods such as SVD-based algorithms to predict the transformation using
corresponding point pairs. We evaluate PosDiffNet on several 3D point cloud
datasets, verifying that it achieves state-of-the-art (SOTA) performance for
point cloud registration in large fields of view with perturbations. The
implementation code of experiments is available at
https://github.com/AI-IT-AVs/PosDiffNet.
Related papers
- P2P-Bridge: Diffusion Bridges for 3D Point Cloud Denoising [81.92854168911704]
We tackle the task of point cloud denoising through a novel framework that adapts Diffusion Schr"odinger bridges to points clouds.
Experiments on object datasets show that P2P-Bridge achieves significant improvements over existing methods.
arXiv Detail & Related papers (2024-08-29T08:00:07Z) - PointDifformer: Robust Point Cloud Registration With Neural Diffusion and Transformer [31.02661827570958]
Point cloud registration is a fundamental technique in 3-D computer vision with applications in graphics, autonomous driving, and robotics.
We propose a robust point cloud registration approach that leverages graph neural partial differential equations (PDEs) and heat kernel signatures.
Empirical experiments on a 3-D point cloud dataset demonstrate that our approach not only achieves state-of-the-art performance for point cloud registration but also exhibits better robustness to additive noise or 3-D shape perturbations.
arXiv Detail & Related papers (2024-04-22T09:50:12Z) - SG-PGM: Partial Graph Matching Network with Semantic Geometric Fusion for 3D Scene Graph Alignment and Its Downstream Tasks [14.548198408544032]
We treat 3D scene graph alignment as a partial graph-matching problem and propose to solve it with a graph neural network.
We reuse the geometric features learned by a point cloud registration method and associate the clustered point-level geometric features with the node-level semantic feature.
We propose a point-matching rescoring method, that uses the node-wise alignment of the 3D scene graph to reweight the matching candidates from a pre-trained point cloud registration method.
arXiv Detail & Related papers (2024-03-28T15:01:58Z) - Clustering based Point Cloud Representation Learning for 3D Analysis [80.88995099442374]
We propose a clustering based supervised learning scheme for point cloud analysis.
Unlike current de-facto, scene-wise training paradigm, our algorithm conducts within-class clustering on the point embedding space.
Our algorithm shows notable improvements on famous point cloud segmentation datasets.
arXiv Detail & Related papers (2023-07-27T03:42:12Z) - Robust Point Cloud Registration Framework Based on Deep Graph
Matching(TPAMI Version) [13.286247750893681]
3D point cloud registration is a fundamental problem in computer vision and robotics.
We propose a novel deep graph matching-based framework for point cloud registration.
arXiv Detail & Related papers (2022-11-09T06:05:25Z) - IDEA-Net: Dynamic 3D Point Cloud Interpolation via Deep Embedding
Alignment [58.8330387551499]
We formulate the problem as estimation of point-wise trajectories (i.e., smooth curves)
We propose IDEA-Net, an end-to-end deep learning framework, which disentangles the problem under the assistance of the explicitly learned temporal consistency.
We demonstrate the effectiveness of our method on various point cloud sequences and observe large improvement over state-of-the-art methods both quantitatively and visually.
arXiv Detail & Related papers (2022-03-22T10:14:08Z) - UPDesc: Unsupervised Point Descriptor Learning for Robust Registration [54.95201961399334]
UPDesc is an unsupervised method to learn point descriptors for robust point cloud registration.
We show that our learned descriptors yield superior performance over existing unsupervised methods.
arXiv Detail & Related papers (2021-08-05T17:11:08Z) - Dynamic Convolution for 3D Point Cloud Instance Segmentation [146.7971476424351]
We propose an approach to instance segmentation from 3D point clouds based on dynamic convolution.
We gather homogeneous points that have identical semantic categories and close votes for the geometric centroids.
The proposed approach is proposal-free, and instead exploits a convolution process that adapts to the spatial and semantic characteristics of each instance.
arXiv Detail & Related papers (2021-07-18T09:05:16Z) - Point Cloud Registration using Representative Overlapping Points [10.843159482657303]
We propose ROPNet, a new deep learning model using Representative Overlapping Points with discriminative features for registration.
Specifically, we propose a context-guided module which uses an encoder to extract global features for predicting point overlap score.
Experiments over ModelNet40 using noisy and partially overlapping point clouds show that the proposed method outperforms traditional and learning-based methods.
arXiv Detail & Related papers (2021-07-06T12:52:22Z) - The Devils in the Point Clouds: Studying the Robustness of Point Cloud
Convolutions [15.997907568429177]
This paper investigates different variants of PointConv, a convolution network on point clouds, to examine their robustness to input scale and rotation changes.
We derive a novel viewpoint-invariant descriptor by utilizing 3D geometric properties as the input to PointConv.
Experiments are conducted on the 2D MNIST & CIFAR-10 datasets as well as the 3D Semantic KITTI & ScanNet dataset.
arXiv Detail & Related papers (2021-01-19T19:32:38Z) - Pseudo-LiDAR Point Cloud Interpolation Based on 3D Motion Representation
and Spatial Supervision [68.35777836993212]
We propose a Pseudo-LiDAR point cloud network to generate temporally and spatially high-quality point cloud sequences.
By exploiting the scene flow between point clouds, the proposed network is able to learn a more accurate representation of the 3D spatial motion relationship.
arXiv Detail & Related papers (2020-06-20T03:11:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.