Preserving Silent Features for Domain Generalization
- URL: http://arxiv.org/abs/2401.03170v1
- Date: Sat, 6 Jan 2024 09:11:41 GMT
- Title: Preserving Silent Features for Domain Generalization
- Authors: Chujie Zhao, Tianren Zhang, Feng Chen
- Abstract summary: Self-supervised contrastive learning pre-trained models do not exhibit better generalization performance than supervised models pre-trained on the same dataset in the DG setting.
We propose a simple yet effective method termed STEP (Silent Feature Preservation) to improve the generalization performance of the self-supervised contrastive learning pre-trained model.
- Score: 6.568921669414849
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Domain generalization (DG) aims to improve the generalization ability of the
model trained on several known training domains over unseen test domains.
Previous work has shown that self-supervised contrastive pre-training improves
the robustness of the model on downstream tasks. However, in this paper, we
find that self-supervised models do not exhibit better generalization
performance than supervised models pre-trained on the same dataset in the DG
setting. We argue that this is owing to the fact that the richer intra-class
discriminative features extracted by self-supervised contrastive learning,
which we term silent features, are suppressed during supervised fine-tuning.
These silent features are likely to contain features that are more
generalizable on the test domain. In this work, we model and analyze this
feature suppression phenomenon and theoretically prove that preserving silent
features can achieve lower expected test domain risk under certain conditions.
In light of this, we propose a simple yet effective method termed STEP (Silent
Feature Preservation) to improve the generalization performance of the
self-supervised contrastive learning pre-trained model by alleviating the
suppression of silent features during the supervised fine-tuning process.
Experimental results show that STEP exhibits state-of-the-art performance on
standard DG benchmarks with significant distribution shifts.
Related papers
- Enhancing Robustness of Vision-Language Models through Orthogonality Learning and Self-Regularization [77.62516752323207]
We introduce an orthogonal fine-tuning method for efficiently fine-tuning pretrained weights and enabling enhanced robustness and generalization.
A self-regularization strategy is further exploited to maintain the stability in terms of zero-shot generalization of VLMs, dubbed OrthSR.
For the first time, we revisit the CLIP and CoOp with our method to effectively improve the model on few-shot image classficiation scenario.
arXiv Detail & Related papers (2024-07-11T10:35:53Z) - Revisiting the Robust Generalization of Adversarial Prompt Tuning [4.033827046965844]
We propose an adaptive Consistency-guided Adrial Prompt Tuning (i.e., CAPT) framework to enhance the alignment of image and text features for adversarial examples.
We conduct experiments across 14 datasets and 4 data sparsity schemes to show the superiority of CAPT over other state-of-the-art adaption methods.
arXiv Detail & Related papers (2024-05-18T02:54:41Z) - Learning Off-policy with Model-based Intrinsic Motivation For Active Online Exploration [15.463313629574111]
This paper investigates how to achieve sample-efficient exploration in continuous control tasks.
We introduce an RL algorithm that incorporates a predictive model and off-policy learning elements.
We derive an intrinsic reward without incurring parameters overhead.
arXiv Detail & Related papers (2024-03-31T11:39:11Z) - Selective Learning: Towards Robust Calibration with Dynamic Regularization [79.92633587914659]
Miscalibration in deep learning refers to there is a discrepancy between the predicted confidence and performance.
We introduce Dynamic Regularization (DReg) which aims to learn what should be learned during training thereby circumventing the confidence adjusting trade-off.
arXiv Detail & Related papers (2024-02-13T11:25:20Z) - Augmenting Unsupervised Reinforcement Learning with Self-Reference [63.68018737038331]
Humans possess the ability to draw on past experiences explicitly when learning new tasks.
We propose the Self-Reference (SR) approach, an add-on module explicitly designed to leverage historical information.
Our approach achieves state-of-the-art results in terms of Interquartile Mean (IQM) performance and Optimality Gap reduction on the Unsupervised Reinforcement Learning Benchmark.
arXiv Detail & Related papers (2023-11-16T09:07:34Z) - Cross-functional Analysis of Generalisation in Behavioural Learning [4.0810783261728565]
We introduce BeLUGA, an analysis method for evaluating behavioural learning considering generalisation across dimensions of different levels.
An aggregate score measures generalisation to unseen functionalities (or overfitting)
arXiv Detail & Related papers (2023-05-22T11:54:19Z) - Modeling Uncertain Feature Representation for Domain Generalization [49.129544670700525]
We show that our method consistently improves the network generalization ability on multiple vision tasks.
Our methods are simple yet effective and can be readily integrated into networks without additional trainable parameters or loss constraints.
arXiv Detail & Related papers (2023-01-16T14:25:02Z) - Relating Regularization and Generalization through the Intrinsic
Dimension of Activations [11.00580615194563]
We show that common regularization techniques uniformly decrease the last-layer ID (LLID) of validation set activations for image classification models.
We also examine the LLID over the course of training of models that exhibit grokking.
arXiv Detail & Related papers (2022-11-23T19:00:00Z) - Domain-Adjusted Regression or: ERM May Already Learn Features Sufficient
for Out-of-Distribution Generalization [52.7137956951533]
We argue that devising simpler methods for learning predictors on existing features is a promising direction for future research.
We introduce Domain-Adjusted Regression (DARE), a convex objective for learning a linear predictor that is provably robust under a new model of distribution shift.
Under a natural model, we prove that the DARE solution is the minimax-optimal predictor for a constrained set of test distributions.
arXiv Detail & Related papers (2022-02-14T16:42:16Z) - Revisiting Consistency Regularization for Semi-Supervised Learning [80.28461584135967]
We propose an improved consistency regularization framework by a simple yet effective technique, FeatDistLoss.
Experimental results show that our model defines a new state of the art for various datasets and settings.
arXiv Detail & Related papers (2021-12-10T20:46:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.