PEneo: Unifying Line Extraction, Line Grouping, and Entity Linking for End-to-end Document Pair Extraction
- URL: http://arxiv.org/abs/2401.03472v3
- Date: Sun, 17 Nov 2024 12:22:47 GMT
- Title: PEneo: Unifying Line Extraction, Line Grouping, and Entity Linking for End-to-end Document Pair Extraction
- Authors: Zening Lin, Jiapeng Wang, Teng Li, Wenhui Liao, Dayi Huang, Longfei Xiong, Lianwen Jin,
- Abstract summary: Document pair extraction aims to identify key and value entities as well as their relationships from visually-rich documents.
Most existing methods divide it into two separate tasks: semantic entity recognition (SER) and relation extraction (RE)
This paper introduces a novel framework, PEneo, which performs document pair extraction in a unified pipeline.
- Score: 28.205723817300576
- License:
- Abstract: Document pair extraction aims to identify key and value entities as well as their relationships from visually-rich documents. Most existing methods divide it into two separate tasks: semantic entity recognition (SER) and relation extraction (RE). However, simply concatenating SER and RE serially can lead to severe error propagation, and it fails to handle cases like multi-line entities in real scenarios. To address these issues, this paper introduces a novel framework, PEneo (Pair Extraction new decoder option), which performs document pair extraction in a unified pipeline, incorporating three concurrent sub-tasks: line extraction, line grouping, and entity linking. This approach alleviates the error accumulation problem and can handle the case of multi-line entities. Furthermore, to better evaluate the model's performance and to facilitate future research on pair extraction, we introduce RFUND, a re-annotated version of the commonly used FUNSD and XFUND datasets, to make them more accurate and cover realistic situations. Experiments on various benchmarks demonstrate PEneo's superiority over previous pipelines, boosting the performance by a large margin (e.g., 19.89%-22.91% F1 score on RFUND-EN) when combined with various backbones like LiLT and LayoutLMv3, showing its effectiveness and generality. Codes and the new annotations are available at https://github.com/ZeningLin/PEneo.
Related papers
- Generative Retrieval Meets Multi-Graded Relevance [104.75244721442756]
We introduce a framework called GRaded Generative Retrieval (GR$2$)
GR$2$ focuses on two key components: ensuring relevant and distinct identifiers, and implementing multi-graded constrained contrastive training.
Experiments on datasets with both multi-graded and binary relevance demonstrate the effectiveness of GR$2$.
arXiv Detail & Related papers (2024-09-27T02:55:53Z) - GEGA: Graph Convolutional Networks and Evidence Retrieval Guided Attention for Enhanced Document-level Relation Extraction [15.246183329778656]
Document-level relation extraction (DocRE) aims to extract relations between entities from unstructured document text.
To overcome these challenges, we propose GEGA, a novel model for DocRE.
We evaluate the GEGA model on three widely used benchmark datasets: DocRED, Re-DocRED, and Revisit-DocRED.
arXiv Detail & Related papers (2024-07-31T07:15:33Z) - REXEL: An End-to-end Model for Document-Level Relation Extraction and Entity Linking [11.374031643273941]
REXEL is a highly efficient and accurate model for the joint task of document level cIE (DocIE)
It is on average 11 times faster than competitive existing approaches in a similar setting.
The combination of speed and accuracy makes REXEL an accurate cost-efficient system for extracting structured information at web-scale.
arXiv Detail & Related papers (2024-04-19T11:04:27Z) - AutoRE: Document-Level Relation Extraction with Large Language Models [27.426703757501507]
We introduce AutoRE, an end-to-end DocRE model that adopts a novel RE extraction paradigm named RHF (Relation-Head-Facts)
Unlike existing approaches, AutoRE does not rely on the assumption of known relation options, making it more reflective of real-world scenarios.
Our experiments on the RE-DocRED dataset showcase AutoRE's best performance, achieving state-of-the-art results.
arXiv Detail & Related papers (2024-03-21T23:48:21Z) - List-aware Reranking-Truncation Joint Model for Search and
Retrieval-augmented Generation [80.12531449946655]
We propose a Reranking-Truncation joint model (GenRT) that can perform the two tasks concurrently.
GenRT integrates reranking and truncation via generative paradigm based on encoder-decoder architecture.
Our method achieves SOTA performance on both reranking and truncation tasks for web search and retrieval-augmented LLMs.
arXiv Detail & Related papers (2024-02-05T06:52:53Z) - M$^3$Net: Multi-view Encoding, Matching, and Fusion for Few-shot
Fine-grained Action Recognition [80.21796574234287]
M$3$Net is a matching-based framework for few-shot fine-grained (FS-FG) action recognition.
It incorporates textitmulti-view encoding, textitmulti-view matching, and textitmulti-view fusion to facilitate embedding encoding, similarity matching, and decision making.
Explainable visualizations and experimental results demonstrate the superiority of M$3$Net in capturing fine-grained action details.
arXiv Detail & Related papers (2023-08-06T09:15:14Z) - Mutually Guided Few-shot Learning for Relational Triple Extraction [10.539566491939844]
Mutually Guided Few-shot learning framework for Triple Extraction (MG-FTE)
Our method consists of an entity-guided relation-decoder to classify relations and a proto-decoder to extract entities.
Our method outperforms many state-of-the-art methods by 12.6 F1 score on FewRel 1.0 (single domain) and 20.5 F1 score on FewRel 2.0 (cross-domain)
arXiv Detail & Related papers (2023-06-23T06:15:54Z) - DORE: Document Ordered Relation Extraction based on Generative Framework [56.537386636819626]
This paper investigates the root cause of the underwhelming performance of the existing generative DocRE models.
We propose to generate a symbolic and ordered sequence from the relation matrix which is deterministic and easier for model to learn.
Experimental results on four datasets show that our proposed method can improve the performance of the generative DocRE models.
arXiv Detail & Related papers (2022-10-28T11:18:10Z) - Learning Diverse Document Representations with Deep Query Interactions
for Dense Retrieval [79.37614949970013]
We propose a new dense retrieval model which learns diverse document representations with deep query interactions.
Our model encodes each document with a set of generated pseudo-queries to get query-informed, multi-view document representations.
arXiv Detail & Related papers (2022-08-08T16:00:55Z) - A sequence-to-sequence approach for document-level relation extraction [4.906513405712846]
Document-level relation extraction (DocRE) requires integrating information within and across sentences.
Seq2rel can learn the subtasks of DocRE end-to-end, replacing a pipeline of task-specific components.
arXiv Detail & Related papers (2022-04-03T16:03:19Z) - Eider: Evidence-enhanced Document-level Relation Extraction [56.71004595444816]
Document-level relation extraction (DocRE) aims at extracting semantic relations among entity pairs in a document.
We propose a three-stage evidence-enhanced DocRE framework consisting of joint relation and evidence extraction, evidence-centered relation extraction (RE), and fusion of extraction results.
arXiv Detail & Related papers (2021-06-16T09:43:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.