Know Your Needs Better: Towards Structured Understanding of Marketer Demands with Analogical Reasoning Augmented LLMs
- URL: http://arxiv.org/abs/2401.04319v3
- Date: Wed, 12 Jun 2024 03:02:45 GMT
- Title: Know Your Needs Better: Towards Structured Understanding of Marketer Demands with Analogical Reasoning Augmented LLMs
- Authors: Junjie Wang, Dan Yang, Binbin Hu, Yue Shen, Wen Zhang, Jinjie Gu,
- Abstract summary: We explore a new way for user targeting, where non-expert marketers could select their target users solely given demands in natural language form.
We propose ARALLM consisting of two modules: Analogical Reasoning based Prompting and Reasoning-Augmented Multi-Task Model Distillation.
- Score: 22.619903994607792
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we explore a new way for user targeting, where non-expert marketers could select their target users solely given demands in natural language form. The key to this issue is how to transform natural languages into practical structured logical languages, i.e., the structured understanding of marketer demands. In practical scenarios, the demands of non-expert marketers are often abstract and diverse. Considering the impressive natural language processing ability of large language models (LLMs), we try to leverage LLMs to solve this issue. To stimulate the LLMs' reasoning ability, the chain-of-thought (CoT) prompting method is widely used, but existing methods still have some limitations in our scenario: (1) Previous methods either use simple "Let's think step by step" spells or provide fixed examples in demonstrations without considering compatibility between prompts and concrete questions, making LLMs ineffective when the marketers' demands are abstract and diverse. (2) Previous methods are often implemented in closed-source models or excessively large models, which is not suitable in industrial practical scenarios. Based on these, we propose ARALLM (i.e., Analogical Reasoning Augmented Large Language Models) consisting of two modules: Analogical Reasoning based Prompting and Reasoning-Augmented Multi-Task Model Distillation. Part of our data and code can be found at https://github.com/alipay/Analogic-Reasoning-Augmented-Large-Language-Model.
Related papers
- DOLLmC: DevOps for Large Language model Customization [0.0]
This research aims to establish a scalable and efficient framework for LLM customization.
We propose a robust framework that enhances continuous learning, seamless deployment, and rigorous version control of LLMs.
arXiv Detail & Related papers (2024-05-19T15:20:27Z) - LLMs for Robotic Object Disambiguation [21.101902684740796]
Our study reveals the LLM's aptitude for solving complex decision making challenges.
A pivotal focus of our research is the object disambiguation capability of LLMs.
We have developed a few-shot prompt engineering system to improve the LLM's ability to pose disambiguating queries.
arXiv Detail & Related papers (2024-01-07T04:46:23Z) - LaRS: Latent Reasoning Skills for Chain-of-Thought Reasoning [61.7853049843921]
Chain-of-thought (CoT) prompting is a popular in-context learning approach for large language models (LLMs)
This paper introduces a new approach named Latent Reasoning Skills (LaRS) that employs unsupervised learning to create a latent space representation of rationales.
arXiv Detail & Related papers (2023-12-07T20:36:10Z) - CLOMO: Counterfactual Logical Modification with Large Language Models [109.60793869938534]
We introduce a novel task, Counterfactual Logical Modification (CLOMO), and a high-quality human-annotated benchmark.
In this task, LLMs must adeptly alter a given argumentative text to uphold a predetermined logical relationship.
We propose an innovative evaluation metric, the Self-Evaluation Score (SES), to directly evaluate the natural language output of LLMs.
arXiv Detail & Related papers (2023-11-29T08:29:54Z) - InfiMM-Eval: Complex Open-Ended Reasoning Evaluation For Multi-Modal
Large Language Models [50.03163753638256]
Multi-modal Large Language Models (MLLMs) are increasingly prominent in the field of artificial intelligence.
Our benchmark comprises three key reasoning categories: deductive, abductive, and analogical reasoning.
We evaluate a selection of representative MLLMs using this rigorously developed open-ended multi-step elaborate reasoning benchmark.
arXiv Detail & Related papers (2023-11-20T07:06:31Z) - Let Models Speak Ciphers: Multiagent Debate through Embeddings [84.20336971784495]
We introduce CIPHER (Communicative Inter-Model Protocol Through Embedding Representation) to address this issue.
By deviating from natural language, CIPHER offers an advantage of encoding a broader spectrum of information without any modification to the model weights.
This showcases the superiority and robustness of embeddings as an alternative "language" for communication among LLMs.
arXiv Detail & Related papers (2023-10-10T03:06:38Z) - Coupling Large Language Models with Logic Programming for Robust and
General Reasoning from Text [5.532477732693001]
We show that a large language model can serve as a highly effective few-shot semantically.
It can convert natural language sentences into a logical form that serves as input for answer set programs.
We demonstrate that this method achieves state-of-the-art performance on several benchmarks, including bAbI, StepGame, CLUTRR, and gSCAN.
arXiv Detail & Related papers (2023-07-15T03:29:59Z) - Augmented Language Models: a Survey [55.965967655575454]
This survey reviews works in which language models (LMs) are augmented with reasoning skills and the ability to use tools.
We refer to them as Augmented Language Models (ALMs)
The missing token objective allows ALMs to learn to reason, use tools, and even act, while still performing standard natural language tasks.
arXiv Detail & Related papers (2023-02-15T18:25:52Z) - Prompting Is Programming: A Query Language for Large Language Models [5.8010446129208155]
We present the novel idea of Language Model Programming (LMP)
LMP generalizes language model prompting from pure text prompts to an intuitive combination of text prompting and scripting.
We show that LMQL can capture a wide range of state-of-the-art prompting methods in an intuitive way.
arXiv Detail & Related papers (2022-12-12T18:09:09Z) - Shortcut Learning of Large Language Models in Natural Language
Understanding [119.45683008451698]
Large language models (LLMs) have achieved state-of-the-art performance on a series of natural language understanding tasks.
They might rely on dataset bias and artifacts as shortcuts for prediction.
This has significantly affected their generalizability and adversarial robustness.
arXiv Detail & Related papers (2022-08-25T03:51:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.