Do Vision and Language Encoders Represent the World Similarly?
- URL: http://arxiv.org/abs/2401.05224v2
- Date: Fri, 22 Mar 2024 18:39:41 GMT
- Title: Do Vision and Language Encoders Represent the World Similarly?
- Authors: Mayug Maniparambil, Raiymbek Akshulakov, Yasser Abdelaziz Dahou Djilali, Sanath Narayan, Mohamed El Amine Seddik, Karttikeya Mangalam, Noel E. O'Connor,
- Abstract summary: Aligned text-image encoders such as CLIP have become the de facto model for vision-language tasks.
We find that the representation spaces of unaligned and aligned encoders are semantically similar.
In the absence of statistical similarity in aligned encoders like CLIP, we show that a possible matching of unaligned encoders exists without any training.
- Score: 22.70701869402434
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Aligned text-image encoders such as CLIP have become the de facto model for vision-language tasks. Furthermore, modality-specific encoders achieve impressive performances in their respective domains. This raises a central question: does an alignment exist between uni-modal vision and language encoders since they fundamentally represent the same physical world? Analyzing the latent spaces structure of vision and language models on image-caption benchmarks using the Centered Kernel Alignment (CKA), we find that the representation spaces of unaligned and aligned encoders are semantically similar. In the absence of statistical similarity in aligned encoders like CLIP, we show that a possible matching of unaligned encoders exists without any training. We frame this as a seeded graph-matching problem exploiting the semantic similarity between graphs and propose two methods - a Fast Quadratic Assignment Problem optimization, and a novel localized CKA metric-based matching/retrieval. We demonstrate the effectiveness of this on several downstream tasks including cross-lingual, cross-domain caption matching and image classification. Code available at github.com/mayug/0-shot-llm-vision.
Related papers
- Towards Realistic Zero-Shot Classification via Self Structural Semantic
Alignment [53.2701026843921]
Large-scale pre-trained Vision Language Models (VLMs) have proven effective for zero-shot classification.
In this paper, we aim at a more challenging setting, Realistic Zero-Shot Classification, which assumes no annotation but instead a broad vocabulary.
We propose the Self Structural Semantic Alignment (S3A) framework, which extracts structural semantic information from unlabeled data while simultaneously self-learning.
arXiv Detail & Related papers (2023-08-24T17:56:46Z) - Unified Mask Embedding and Correspondence Learning for Self-Supervised
Video Segmentation [76.40565872257709]
We develop a unified framework which simultaneously models cross-frame dense correspondence for locally discriminative feature learning.
It is able to directly learn to perform mask-guided sequential segmentation from unlabeled videos.
Our algorithm sets state-of-the-arts on two standard benchmarks (i.e., DAVIS17 and YouTube-VOS)
arXiv Detail & Related papers (2023-03-17T16:23:36Z) - Generalized Decoding for Pixel, Image, and Language [197.85760901840177]
We present X-Decoder, a generalized decoding model that can predict pixel-level segmentation and language tokens seamlessly.
X-Decoder is the first work that provides a unified way to support all types of image segmentation and a variety of vision-language (VL) tasks.
arXiv Detail & Related papers (2022-12-21T18:58:41Z) - Correspondence Matters for Video Referring Expression Comprehension [64.60046797561455]
Video Referring Expression (REC) aims to localize the referent objects described in the sentence to visual regions in the video frames.
Existing methods suffer from two problems: 1) inconsistent localization results across video frames; 2) confusion between the referent and contextual objects.
We propose a novel Dual Correspondence Network (dubbed as DCNet) which explicitly enhances the dense associations in both the inter-frame and cross-modal manners.
arXiv Detail & Related papers (2022-07-21T10:31:39Z) - CyCLIP: Cyclic Contrastive Language-Image Pretraining [34.588147979731374]
Recent advances in contrastive representation learning over paired image-text data have led to models such as CLIP that achieve state-of-the-art performance for zero-shot classification and distributional robustness.
We demonstrate that the image and text representations learned via a standard contrastive objective are not interchangeable and can lead to inconsistent downstream predictions.
We propose CyCLIP, a framework for contrastive representation learning that explicitly optimize for the learned representations to be geometrically consistent in the image and text space.
arXiv Detail & Related papers (2022-05-28T15:31:17Z) - Language-driven Semantic Segmentation [88.21498323896475]
We present LSeg, a novel model for language-driven semantic image segmentation.
We use a text encoder to compute embeddings of descriptive input labels.
The encoder is trained with a contrastive objective to align pixel embeddings to the text embedding of the corresponding semantic class.
arXiv Detail & Related papers (2022-01-10T18:59:10Z) - Contrastive Semantic Similarity Learning for Image Captioning Evaluation
with Intrinsic Auto-encoder [52.42057181754076]
Motivated by the auto-encoder mechanism and contrastive representation learning advances, we propose a learning-based metric for image captioning.
We develop three progressive model structures to learn the sentence level representations.
Experiment results show that our proposed method can align well with the scores generated from other contemporary metrics.
arXiv Detail & Related papers (2021-06-29T12:27:05Z) - A comparison of self-supervised speech representations as input features
for unsupervised acoustic word embeddings [32.59716743279858]
We look at representation learning at the short-time frame level.
Recent approaches include self-supervised predictive coding and correspondence autoencoder (CAE) models.
We compare frame-level features from contrastive predictive coding ( CPC), autoregressive predictive coding and a CAE to conventional MFCCs.
arXiv Detail & Related papers (2020-12-14T10:17:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.