Graph Q-Learning for Combinatorial Optimization
- URL: http://arxiv.org/abs/2401.05610v1
- Date: Thu, 11 Jan 2024 01:15:28 GMT
- Title: Graph Q-Learning for Combinatorial Optimization
- Authors: Victoria M. Dax, Jiachen Li, Kevin Leahy, Mykel J. Kochenderfer
- Abstract summary: Graph Neural Networks (GNNs) have been shown to be effective at solving prediction and inference problems on graph data.
We propose and demonstrate that GNNs can be applied to solve Combinatorial Optimization problems.
- Score: 44.8086492019594
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph-structured data is ubiquitous throughout natural and social sciences,
and Graph Neural Networks (GNNs) have recently been shown to be effective at
solving prediction and inference problems on graph data. In this paper, we
propose and demonstrate that GNNs can be applied to solve Combinatorial
Optimization (CO) problems. CO concerns optimizing a function over a discrete
solution space that is often intractably large. To learn to solve CO problems,
we formulate the optimization process as a sequential decision making problem,
where the return is related to how close the candidate solution is to
optimality. We use a GNN to learn a policy to iteratively build increasingly
promising candidate solutions. We present preliminary evidence that GNNs
trained through Q-Learning can solve CO problems with performance approaching
state-of-the-art heuristic-based solvers, using only a fraction of the
parameters and training time.
Related papers
- Assessing and Enhancing Graph Neural Networks for Combinatorial Optimization: Novel Approaches and Application in Maximum Independent Set Problems [0.0]
Graph Neural Networks (GNNs) show promise for researchers in solving Combinatorial optimization (CO) problems.
This study investigates the effectiveness of GNNs in solving the maximum independent set (MIS) problem.
arXiv Detail & Related papers (2024-11-06T09:12:31Z) - Enhancing GNNs Performance on Combinatorial Optimization by Recurrent Feature Update [0.09986418756990156]
We introduce a novel algorithm, denoted hereafter as QRF-GNN, leveraging the power of GNNs to efficiently solve Combinatorial optimization (CO) problems.
It relies on unsupervised learning by minimizing the loss function derived from QUBO relaxation.
Results of experiments show that QRF-GNN drastically surpasses existing learning-based approaches and is comparable to the state-of-the-art conventionals.
arXiv Detail & Related papers (2024-07-23T13:34:35Z) - Decision-focused Graph Neural Networks for Combinatorial Optimization [62.34623670845006]
An emerging strategy to tackle optimization problems involves the adoption of graph neural networks (GNNs) as an alternative to traditional algorithms.
Despite the growing popularity of GNNs and traditional algorithm solvers in the realm of CO, there is limited research on their integrated use and the correlation between them within an end-to-end framework.
We introduce a decision-focused framework that utilizes GNNs to address CO problems with auxiliary support.
arXiv Detail & Related papers (2024-06-05T22:52:27Z) - Combinatorial Optimization with Automated Graph Neural Networks [28.19349828026972]
We present a new class of textbfAUTOmated textbfGNNs for solving NP-hard CO problems, namely textbfAutoGNP.
The idea of AutoGNP is to use graph neural architecture search algorithms to automatically find the best GNNs for a given NP-hard optimization problem.
arXiv Detail & Related papers (2024-06-05T02:43:41Z) - Towards a General Recipe for Combinatorial Optimization with Multi-Filter GNNs [13.871690454501389]
We introduce GCON, a novel GNN architecture that leverages a complex filter bank and localized attention mechanisms to solve CO problems on graphs.
GCON is competitive across all tasks and consistently outperforms other specialized GNN-based approaches.
arXiv Detail & Related papers (2024-05-31T00:02:07Z) - Let the Flows Tell: Solving Graph Combinatorial Optimization Problems
with GFlowNets [86.43523688236077]
Combinatorial optimization (CO) problems are often NP-hard and out of reach for exact algorithms.
GFlowNets have emerged as a powerful machinery to efficiently sample from composite unnormalized densities sequentially.
In this paper, we design Markov decision processes (MDPs) for different problems and propose to train conditional GFlowNets to sample from the solution space.
arXiv Detail & Related papers (2023-05-26T15:13:09Z) - A Differentiable Approach to Combinatorial Optimization using Dataless
Neural Networks [20.170140039052455]
We propose a radically different approach in that no data is required for training the neural networks that produce the solution.
In particular, we reduce the optimization problem to a neural network and employ a dataless training scheme to refine the parameters of the network such that those parameters yield the structure of interest.
arXiv Detail & Related papers (2022-03-15T19:21:31Z) - A Bi-Level Framework for Learning to Solve Combinatorial Optimization on
Graphs [91.07247251502564]
We propose a hybrid approach to combine the best of the two worlds, in which a bi-level framework is developed with an upper-level learning method to optimize the graph.
Such a bi-level approach simplifies the learning on the original hard CO and can effectively mitigate the demand for model capacity.
arXiv Detail & Related papers (2021-06-09T09:18:18Z) - Self-Directed Online Machine Learning for Topology Optimization [58.920693413667216]
Self-directed Online Learning Optimization integrates Deep Neural Network (DNN) with Finite Element Method (FEM) calculations.
Our algorithm was tested by four types of problems including compliance minimization, fluid-structure optimization, heat transfer enhancement and truss optimization.
It reduced the computational time by 2 5 orders of magnitude compared with directly using methods, and outperformed all state-of-the-art algorithms tested in our experiments.
arXiv Detail & Related papers (2020-02-04T20:00:28Z) - Optimizing Wireless Systems Using Unsupervised and
Reinforced-Unsupervised Deep Learning [96.01176486957226]
Resource allocation and transceivers in wireless networks are usually designed by solving optimization problems.
In this article, we introduce unsupervised and reinforced-unsupervised learning frameworks for solving both variable and functional optimization problems.
arXiv Detail & Related papers (2020-01-03T11:01:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.