A Survey on Game Theory Optimal Poker
- URL: http://arxiv.org/abs/2401.06168v1
- Date: Tue, 2 Jan 2024 04:19:25 GMT
- Title: A Survey on Game Theory Optimal Poker
- Authors: Prathamesh Sonawane and Arav Chheda
- Abstract summary: No non-trivial imperfect information game has been solved to date.
This makes poker a great test bed for Artificial Intelligence research.
We discuss the intricacies of abstraction techniques, betting models, and specific strategies employed by successful poker bots.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Poker is in the family of imperfect information games unlike other games such
as chess, connect four, etc which are perfect information game instead. While
many perfect information games have been solved, no non-trivial imperfect
information game has been solved to date. This makes poker a great test bed for
Artificial Intelligence research. In this paper we firstly compare Game theory
optimal poker to Exploitative poker. Secondly, we discuss the intricacies of
abstraction techniques, betting models, and specific strategies employed by
successful poker bots like Tartanian[1] and Pluribus[6]. Thirdly, we also
explore 2-player vs multi-player games and the limitations that come when
playing with more players. Finally, this paper discusses the role of machine
learning and theoretical approaches in developing winning strategies and
suggests future directions for this rapidly evolving field.
Related papers
- Instruction-Driven Game Engine: A Poker Case Study [53.689520884467065]
The IDGE project aims to democratize game development by enabling a large language model to follow free-form game descriptions and generate game-play processes.
We train the IDGE in a curriculum manner that progressively increases its exposure to complex scenarios.
Our initial progress lies in developing an IDGE for Poker, which not only supports a wide range of poker variants but also allows for highly individualized new poker games through natural language inputs.
arXiv Detail & Related papers (2024-10-17T11:16:27Z) - PokerGPT: An End-to-End Lightweight Solver for Multi-Player Texas
Hold'em via Large Language Model [14.14786217204364]
Poker, also known as Texas Hold'em, has always been a typical research target within imperfect information games (IIGs)
We introduce PokerGPT, an end-to-end solver for playing Texas Hold'em with arbitrary number of players and gaining high win rates.
arXiv Detail & Related papers (2024-01-04T13:27:50Z) - All by Myself: Learning Individualized Competitive Behaviour with a
Contrastive Reinforcement Learning optimization [57.615269148301515]
In a competitive game scenario, a set of agents have to learn decisions that maximize their goals and minimize their adversaries' goals at the same time.
We propose a novel model composed of three neural layers that learn a representation of a competitive game, learn how to map the strategy of specific opponents, and how to disrupt them.
Our experiments demonstrate that our model achieves better performance when playing against offline, online, and competitive-specific models, in particular when playing against the same opponent multiple times.
arXiv Detail & Related papers (2023-10-02T08:11:07Z) - Are ChatGPT and GPT-4 Good Poker Players? -- A Pre-Flop Analysis [3.4111723103928173]
We put ChatGPT and GPT-4 through the poker test and evaluate their poker skills.
Our findings reveal that while both models display an advanced understanding of poker, both ChatGPT and GPT-4 are NOT game theory optimal poker players.
arXiv Detail & Related papers (2023-08-23T23:16:35Z) - Mastering the Game of Stratego with Model-Free Multiagent Reinforcement
Learning [86.37438204416435]
Stratego is one of the few iconic board games that Artificial Intelligence (AI) has not yet mastered.
Decisions in Stratego are made over a large number of discrete actions with no obvious link between action and outcome.
DeepNash beats existing state-of-the-art AI methods in Stratego and achieved a yearly (2022) and all-time top-3 rank on the Gravon games platform.
arXiv Detail & Related papers (2022-06-30T15:53:19Z) - DecisionHoldem: Safe Depth-Limited Solving With Diverse Opponents for Imperfect-Information Games [31.26667266662521]
DecisionHoldem is a high-level AI for heads-up no-limit Texas hold'em with safe depth-limited subgame solving.
We release the source codes and tools of DecisionHoldem to promote AI development in imperfect-information games.
arXiv Detail & Related papers (2022-01-27T15:35:49Z) - Student of Games: A unified learning algorithm for both perfect and
imperfect information games [22.97853623156316]
Student of Games is an algorithm that combines guided search, self-play learning, and game-theoretic reasoning.
We prove that Student of Games is sound, converging to perfect play as available computation and approximation capacity increases.
Student of Games reaches strong performance in chess and Go, beats the strongest openly available agent in heads-up no-limit Texas hold'em poker, and defeats the state-of-the-art agent in Scotland Yard.
arXiv Detail & Related papers (2021-12-06T17:16:24Z) - Discovering Multi-Agent Auto-Curricula in Two-Player Zero-Sum Games [31.97631243571394]
We introduce a framework, LMAC, that automates the discovery of the update rule without explicit human design.
Surprisingly, even without human design, the discovered MARL algorithms achieve competitive or even better performance.
We show that LMAC is able to generalise from small games to large games, for example training on Kuhn Poker and outperforming PSRO.
arXiv Detail & Related papers (2021-06-04T22:30:25Z) - Learning to Play Imperfect-Information Games by Imitating an Oracle
Planner [77.67437357688316]
We consider learning to play multiplayer imperfect-information games with simultaneous moves and large state-action spaces.
Our approach is based on model-based planning.
We show that the planner is able to discover efficient playing strategies in the games of Clash Royale and Pommerman.
arXiv Detail & Related papers (2020-12-22T17:29:57Z) - Learning to Play Sequential Games versus Unknown Opponents [93.8672371143881]
We consider a repeated sequential game between a learner, who plays first, and an opponent who responds to the chosen action.
We propose a novel algorithm for the learner when playing against an adversarial sequence of opponents.
Our results include algorithm's regret guarantees that depend on the regularity of the opponent's response.
arXiv Detail & Related papers (2020-07-10T09:33:05Z) - Efficient exploration of zero-sum stochastic games [83.28949556413717]
We investigate the increasingly important and common game-solving setting where we do not have an explicit description of the game but only oracle access to it through gameplay.
During a limited-duration learning phase, the algorithm can control the actions of both players in order to try to learn the game and how to play it well.
Our motivation is to quickly learn strategies that have low exploitability in situations where evaluating the payoffs of a queried strategy profile is costly.
arXiv Detail & Related papers (2020-02-24T20:30:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.