ViSAGe: A Global-Scale Analysis of Visual Stereotypes in Text-to-Image Generation
- URL: http://arxiv.org/abs/2401.06310v3
- Date: Sun, 14 Jul 2024 21:17:05 GMT
- Title: ViSAGe: A Global-Scale Analysis of Visual Stereotypes in Text-to-Image Generation
- Authors: Akshita Jha, Vinodkumar Prabhakaran, Remi Denton, Sarah Laszlo, Shachi Dave, Rida Qadri, Chandan K. Reddy, Sunipa Dev,
- Abstract summary: We introduce the ViSAGe dataset to enable the evaluation of nationality-based stereotypes in T2I models.
We show that stereotypical attributes in ViSAGe are thrice as likely to be present in generated images of corresponding identities as compared to other attributes.
- Score: 24.862839173648467
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent studies have shown that Text-to-Image (T2I) model generations can reflect social stereotypes present in the real world. However, existing approaches for evaluating stereotypes have a noticeable lack of coverage of global identity groups and their associated stereotypes. To address this gap, we introduce the ViSAGe (Visual Stereotypes Around the Globe) dataset to enable the evaluation of known nationality-based stereotypes in T2I models, across 135 nationalities. We enrich an existing textual stereotype resource by distinguishing between stereotypical associations that are more likely to have visual depictions, such as `sombrero', from those that are less visually concrete, such as 'attractive'. We demonstrate ViSAGe's utility through a multi-faceted evaluation of T2I generations. First, we show that stereotypical attributes in ViSAGe are thrice as likely to be present in generated images of corresponding identities as compared to other attributes, and that the offensiveness of these depictions is especially higher for identities from Africa, South America, and South East Asia. Second, we assess the stereotypical pull of visual depictions of identity groups, which reveals how the 'default' representations of all identity groups in ViSAGe have a pull towards stereotypical depictions, and that this pull is even more prominent for identity groups from the Global South. CONTENT WARNING: Some examples contain offensive stereotypes.
Related papers
- Who is better at math, Jenny or Jingzhen? Uncovering Stereotypes in Large Language Models [9.734705470760511]
We use GlobalBias to study a broad set of stereotypes from around the world.
We generate character profiles based on given names and evaluate the prevalence of stereotypes in model outputs.
arXiv Detail & Related papers (2024-07-09T14:52:52Z) - Vision-Language Models under Cultural and Inclusive Considerations [53.614528867159706]
Large vision-language models (VLMs) can assist visually impaired people by describing images from their daily lives.
Current evaluation datasets may not reflect diverse cultural user backgrounds or the situational context of this use case.
We create a survey to determine caption preferences and propose a culture-centric evaluation benchmark by filtering VizWiz, an existing dataset with images taken by people who are blind.
We then evaluate several VLMs, investigating their reliability as visual assistants in a culturally diverse setting.
arXiv Detail & Related papers (2024-07-08T17:50:00Z) - The Male CEO and the Female Assistant: Evaluation and Mitigation of Gender Biases in Text-To-Image Generation of Dual Subjects [58.27353205269664]
We propose the Paired Stereotype Test (PST) framework, which queries T2I models to depict two individuals assigned with male-stereotyped and female-stereotyped social identities.
PST queries T2I models to depict two individuals assigned with male-stereotyped and female-stereotyped social identities.
Using PST, we evaluate two aspects of gender biases -- the well-known bias in gendered occupation and a novel aspect: bias in organizational power.
arXiv Detail & Related papers (2024-02-16T21:32:27Z) - 'Person' == Light-skinned, Western Man, and Sexualization of Women of
Color: Stereotypes in Stable Diffusion [5.870257045294649]
We study stereotypes embedded within one of the most popular text-to-image generators: Stable Diffusion.
We examine what stereotypes of gender and nationality/continental identity does Stable Diffusion display in the absence of such information.
arXiv Detail & Related papers (2023-10-30T19:57:01Z) - Building Socio-culturally Inclusive Stereotype Resources with Community
Engagement [9.131536842607069]
We demonstrate a socio-culturally aware expansion of evaluation resources in the Indian societal context, specifically for the harm of stereotyping.
The resultant resource increases the number of stereotypes known for and in the Indian context by over 1000 stereotypes across many unique identities.
arXiv Detail & Related papers (2023-07-20T01:26:34Z) - SeeGULL: A Stereotype Benchmark with Broad Geo-Cultural Coverage
Leveraging Generative Models [15.145145928670827]
SeeGULL is a broad-coverage stereotype dataset in English.
It contains stereotypes about identity groups spanning 178 countries across 8 different geo-political regions across 6 continents.
We also include fine-grained offensiveness scores for different stereotypes and demonstrate their global disparities.
arXiv Detail & Related papers (2023-05-19T17:30:19Z) - Stable Bias: Analyzing Societal Representations in Diffusion Models [72.27121528451528]
We propose a new method for exploring the social biases in Text-to-Image (TTI) systems.
Our approach relies on characterizing the variation in generated images triggered by enumerating gender and ethnicity markers in the prompts.
We leverage this method to analyze images generated by 3 popular TTI systems and find that while all of their outputs show correlations with US labor demographics, they also consistently under-represent marginalized identities to different extents.
arXiv Detail & Related papers (2023-03-20T19:32:49Z) - Easily Accessible Text-to-Image Generation Amplifies Demographic
Stereotypes at Large Scale [61.555788332182395]
We investigate the potential for machine learning models to amplify dangerous and complex stereotypes.
We find a broad range of ordinary prompts produce stereotypes, including prompts simply mentioning traits, descriptors, occupations, or objects.
arXiv Detail & Related papers (2022-11-07T18:31:07Z) - The Principle of Diversity: Training Stronger Vision Transformers Calls
for Reducing All Levels of Redundancy [111.49944789602884]
This paper systematically studies the ubiquitous existence of redundancy at all three levels: patch embedding, attention map, and weight space.
We propose corresponding regularizers that encourage the representation diversity and coverage at each of those levels, that enabling capturing more discriminative information.
arXiv Detail & Related papers (2022-03-12T04:48:12Z) - Fairness for Image Generation with Uncertain Sensitive Attributes [97.81354305427871]
This work tackles the issue of fairness in the context of generative procedures, such as image super-resolution.
While traditional group fairness definitions are typically defined with respect to specified protected groups, we emphasize that there are no ground truth identities.
We show that the natural extension of demographic parity is strongly dependent on the grouping, and emphimpossible to achieve obliviously.
arXiv Detail & Related papers (2021-06-23T06:17:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.