Semantic Parsing for Question Answering over Knowledge Graphs
- URL: http://arxiv.org/abs/2401.06772v2
- Date: Sat, 27 Jan 2024 20:56:20 GMT
- Title: Semantic Parsing for Question Answering over Knowledge Graphs
- Authors: Sijia Wei, Wenwen Zhang, Qisong Li, Jiang Zhao
- Abstract summary: We introduce a novel method with graph-to-segment mapping for question answering over knowledge graphs.
This method centers on semantic parsing, a key approach for interpreting these utterances.
Our framework employs a combination of rule-based and neural-based techniques to parse and construct semantic segment sequences.
- Score: 3.10647754288788
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we introduce a novel method with graph-to-segment mapping for
question answering over knowledge graphs, which helps understanding question
utterances. This method centers on semantic parsing, a key approach for
interpreting these utterances. The challenges lie in comprehending implicit
entities, relationships, and complex constraints like time, ordinality, and
aggregation within questions, contextualized by the knowledge graph. Our
framework employs a combination of rule-based and neural-based techniques to
parse and construct highly accurate and comprehensive semantic segment
sequences. These sequences form semantic query graphs, effectively representing
question utterances. We approach question semantic parsing as a sequence
generation task, utilizing an encoder-decoder neural network to transform
natural language questions into semantic segments. Moreover, to enhance the
parsing of implicit entities and relations, we incorporate a graph neural
network that leverages the context of the knowledge graph to better understand
question representations. Our experimental evaluations on two datasets
demonstrate the effectiveness and superior performance of our model in semantic
parsing for question answering.
Related papers
- Word and Phrase Features in Graph Convolutional Network for Automatic Question Classification [0.7405975743268344]
We propose a novel approach leveraging graph convolutional networks (GCNs) to better model the inherent structure of questions.
By representing questions as graphs, our method allows GCNs to learn from the interconnected nature of language more effectively.
Our findings demonstrate that GCNs, augmented with phrase-based features, offer a promising solution for more accurate and context-aware question classification.
arXiv Detail & Related papers (2024-09-04T07:13:30Z) - HPE:Answering Complex Questions over Text by Hybrid Question Parsing and
Execution [92.69684305578957]
We propose a framework of question parsing and execution on textual QA.
The proposed framework can be viewed as a top-down question parsing followed by a bottom-up answer backtracking.
Our experiments on MuSiQue, 2WikiQA, HotpotQA, and NQ show that the proposed parsing and hybrid execution framework outperforms existing approaches in supervised, few-shot, and zero-shot settings.
arXiv Detail & Related papers (2023-05-12T22:37:06Z) - Conversational Semantic Parsing using Dynamic Context Graphs [68.72121830563906]
We consider the task of conversational semantic parsing over general purpose knowledge graphs (KGs) with millions of entities, and thousands of relation-types.
We focus on models which are capable of interactively mapping user utterances into executable logical forms.
arXiv Detail & Related papers (2023-05-04T16:04:41Z) - Variational Cross-Graph Reasoning and Adaptive Structured Semantics
Learning for Compositional Temporal Grounding [143.5927158318524]
Temporal grounding is the task of locating a specific segment from an untrimmed video according to a query sentence.
We introduce a new Compositional Temporal Grounding task and construct two new dataset splits.
We argue that the inherent structured semantics inside the videos and language is the crucial factor to achieve compositional generalization.
arXiv Detail & Related papers (2023-01-22T08:02:23Z) - Adaptive Hierarchical Graph Reasoning with Semantic Coherence for
Video-and-Language Inference [81.50675020698662]
Video-and-Language Inference is a recently proposed task for joint video-and-language understanding.
We propose an adaptive hierarchical graph network that achieves in-depth understanding of the video over complex interactions.
We introduce semantic coherence learning to explicitly encourage the semantic coherence of the adaptive hierarchical graph network from three hierarchies.
arXiv Detail & Related papers (2021-07-26T15:23:19Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
Existing representation learning methods in graph convolutional networks are mainly designed by describing the neighborhood of each node as a perceptual whole.
We propose a Semantic Graph Convolutional Networks (SGCN) that explores the implicit semantics by learning latent semantic-paths in graphs.
arXiv Detail & Related papers (2021-01-16T16:18:43Z) - Inducing Alignment Structure with Gated Graph Attention Networks for
Sentence Matching [24.02847802702168]
This paper proposes a graph-based approach for sentence matching.
We represent a sentence pair as a graph with several carefully design strategies.
We then employ a novel gated graph attention network to encode the constructed graph for sentence matching.
arXiv Detail & Related papers (2020-10-15T11:25:54Z) - Joint Semantic Analysis with Document-Level Cross-Task Coherence Rewards [13.753240692520098]
We present a neural network architecture for joint coreference resolution and semantic role labeling for English.
We use reinforcement learning to encourage global coherence over the document and between semantic annotations.
This leads to improvements on both tasks in multiple datasets from different domains.
arXiv Detail & Related papers (2020-10-12T09:36:24Z) - Iterative Context-Aware Graph Inference for Visual Dialog [126.016187323249]
We propose a novel Context-Aware Graph (CAG) neural network.
Each node in the graph corresponds to a joint semantic feature, including both object-based (visual) and history-related (textual) context representations.
arXiv Detail & Related papers (2020-04-05T13:09:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.