Human-Instruction-Free LLM Self-Alignment with Limited Samples
- URL: http://arxiv.org/abs/2401.06785v1
- Date: Sat, 6 Jan 2024 14:00:12 GMT
- Title: Human-Instruction-Free LLM Self-Alignment with Limited Samples
- Authors: Hongyi Guo, Yuanshun Yao, Wei Shen, Jiaheng Wei, Xiaoying Zhang,
Zhaoran Wang, Yang Liu
- Abstract summary: We propose an algorithm that can self-align large language models (LLMs) iteratively without active human involvement.
Unlike existing works, our algorithm relies on neither human-crafted instructions nor labeled rewards, significantly reducing human involvement.
We show that our method can unlock the LLMs' self-generalization ability to perform alignment with near-zero human supervision.
- Score: 64.69906311787055
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Aligning large language models (LLMs) with human values is a vital task for
LLM practitioners. Current alignment techniques have several limitations: (1)
requiring a large amount of annotated data; (2) demanding heavy human
involvement; (3) lacking a systematic mechanism to continuously improve. In
this work, we study aligning LLMs to a new domain with limited samples (e.g. <
100). We propose an algorithm that can self-align LLMs iteratively without
active human involvement. Unlike existing works, our algorithm relies on
neither human-crafted instructions nor labeled rewards, significantly reducing
human involvement. In addition, our algorithm can self-improve the alignment
continuously. The key idea is to first retrieve high-quality samples related to
the target domain and use them as In-context Learning examples to generate more
samples. Then we use the self-generated samples to finetune the LLM
iteratively. We show that our method can unlock the LLMs' self-generalization
ability to perform alignment with near-zero human supervision. We test our
algorithm on three benchmarks in safety, truthfulness, and
instruction-following, and show good performance in alignment, domain
adaptability, and scalability.
Related papers
- RLEF: Grounding Code LLMs in Execution Feedback with Reinforcement Learning [35.446870721902904]
Large language models (LLMs) deployed as agents solve user-specified tasks over multiple steps while keeping the required manual engagement to a minimum.
We propose an end-to-end reinforcement learning method for teaching models to leverage execution feedback in the realm of code synthesis.
arXiv Detail & Related papers (2024-10-02T23:25:17Z) - Can LLMs Replace Manual Annotation of Software Engineering Artifacts? [24.563167762241346]
Large language models (LLMs) have recently started to demonstrate human-level performance in several areas.
This paper explores the possibility of substituting costly human subjects with much cheaper LLM queries in evaluations of code and code-related artifacts.
Our results show that replacing some human annotation effort with LLMs can produce inter-rater agreements equal or close to human-rater agreement.
arXiv Detail & Related papers (2024-08-10T12:30:01Z) - Decoding with Limited Teacher Supervision Requires Understanding When to Trust the Teacher [11.136112399898481]
How can small-scale large language models (LLMs) efficiently utilize the supervision of LLMs to improve their generative quality?
We develop an algorithm to effectively aggregate the small-scale LLM and LLM predictions on initial tokens.
We demonstrate that our method provides a consistent improvement over conventional decoding strategies.
arXiv Detail & Related papers (2024-06-26T01:16:12Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
Reinforcement learning (RL) has become the de facto standard practice for sequential decision-making problems by improving future acting policies with feedback.
Recent developments in large language models (LLMs) have showcased impressive capabilities in language understanding and generation, yet they fall short in exploration and self-improvement capabilities.
We develop an algorithm named LINVIT that incorporates LLM guidance as a regularization factor in value-based RL, leading to significant reductions in the amount of data needed for learning.
arXiv Detail & Related papers (2024-02-25T20:07:13Z) - DeAL: Decoding-time Alignment for Large Language Models [59.63643988872571]
Large Language Models (LLMs) are nowadays expected to generate content aligned with human preferences.
We propose DeAL, a framework that allows the user to customize reward functions and enables Detime Alignment of LLMs.
Our experiments show that we can DeAL with fine-grained trade-offs, improve adherence to alignment objectives, and address residual gaps in LLMs.
arXiv Detail & Related papers (2024-02-05T06:12:29Z) - LLMaAA: Making Large Language Models as Active Annotators [32.57011151031332]
We propose LLMaAA, which takes large language models as annotators and puts them into an active learning loop to determine what to annotate efficiently.
We conduct experiments and analysis on two classic NLP tasks, named entity recognition and relation extraction.
With LLMaAA, task-specific models trained from LLM-generated labels can outperform the teacher within only hundreds of annotated examples.
arXiv Detail & Related papers (2023-10-30T14:54:15Z) - Aligning Large Language Models with Human: A Survey [53.6014921995006]
Large Language Models (LLMs) trained on extensive textual corpora have emerged as leading solutions for a broad array of Natural Language Processing (NLP) tasks.
Despite their notable performance, these models are prone to certain limitations such as misunderstanding human instructions, generating potentially biased content, or factually incorrect information.
This survey presents a comprehensive overview of these alignment technologies, including the following aspects.
arXiv Detail & Related papers (2023-07-24T17:44:58Z) - Principle-Driven Self-Alignment of Language Models from Scratch with
Minimal Human Supervision [84.31474052176343]
Recent AI-assistant agents, such as ChatGPT, rely on supervised fine-tuning (SFT) with human annotations and reinforcement learning from human feedback to align the output with human intentions.
This dependence can significantly constrain the true potential of AI-assistant agents due to the high cost of obtaining human supervision.
We propose a novel approach called SELF-ALIGN, which combines principle-driven reasoning and the generative power of LLMs for the self-alignment of AI agents with minimal human supervision.
arXiv Detail & Related papers (2023-05-04T17:59:28Z) - Generation-driven Contrastive Self-training for Zero-shot Text Classification with Instruction-following LLM [31.25193238045053]
We introduce a novel method, namely GenCo, which leverages the strong generative power of large language models to assist in training a smaller language model.
In our method, an LLM plays an important role in the self-training loop of a smaller model in two important ways.
It helps crafting additional high-quality training pairs, by rewriting input texts conditioned on predicted labels.
arXiv Detail & Related papers (2023-04-24T07:35:38Z) - Bi-level Alignment for Cross-Domain Crowd Counting [113.78303285148041]
Current methods rely on external data for training an auxiliary task or apply an expensive coarse-to-fine estimation.
We develop a new adversarial learning based method, which is simple and efficient to apply.
We evaluate our approach on five real-world crowd counting benchmarks, where we outperform existing approaches by a large margin.
arXiv Detail & Related papers (2022-05-12T02:23:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.