Polariton lattices as binarized neuromorphic networks
- URL: http://arxiv.org/abs/2401.07232v1
- Date: Sun, 14 Jan 2024 08:32:41 GMT
- Title: Polariton lattices as binarized neuromorphic networks
- Authors: Evgeny Sedov and Alexey Kavokin
- Abstract summary: We introduce a novel neuromorphic network architecture based on a lattice of exciton-polariton condensates, intricately interconnected and energized through non-resonant optical pumping.
The network employs a binary framework, where each neuron, facilitated by the spatial coherence of pairwise coupled condensates, performs binary operations.
The network's performance was evaluated using the MNIST dataset for handwritten digit recognition, showcasing the potential to outperform existing polaritonic neuromorphic systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a novel neuromorphic network architecture based on a lattice of
exciton-polariton condensates, intricately interconnected and energized through
non-resonant optical pumping. The network employs a binary framework, where
each neuron, facilitated by the spatial coherence of pairwise coupled
condensates, performs binary operations. This coherence, emerging from the
ballistic propagation of polaritons, ensures efficient, network-wide
communication. The binary neuron switching mechanism, driven by the nonlinear
repulsion through the excitonic component of polaritons, offers computational
efficiency and scalability advantages over continuous weight neural networks.
Our network enables parallel processing, enhancing computational speed compared
to sequential or pulse-coded binary systems. The system's performance was
evaluated using the MNIST dataset for handwritten digit recognition, showcasing
the potential to outperform existing polaritonic neuromorphic systems, as
demonstrated by its impressive predicted classification accuracy of up to
97.5%.
Related papers
- Hardware-Friendly Implementation of Physical Reservoir Computing with CMOS-based Time-domain Analog Spiking Neurons [0.26963330643873434]
This paper introduces a spiking neural network (SNN) for a hardware-friendly physical reservoir computing (RC) on a complementary metal-oxide-semiconductor (CMOS) platform.
We demonstrate RC through short-term memory and exclusive OR tasks, and the spoken digit recognition task with an accuracy of 97.7%.
arXiv Detail & Related papers (2024-09-18T00:23:00Z) - Time-independent Spiking Neuron via Membrane Potential Estimation for Efficient Spiking Neural Networks [4.142699381024752]
computational inefficiency of spiking neural networks (SNNs) is primarily due to the sequential updates of membrane potential.
We propose Membrane Potential Estimation Parallel Spiking Neurons (MPE-PSN), a parallel computation method for spiking neurons.
Our approach exhibits promise for enhancing computational efficiency, particularly under conditions of elevated neuron density.
arXiv Detail & Related papers (2024-09-08T05:14:22Z) - Exploring neural oscillations during speech perception via surrogate gradient spiking neural networks [59.38765771221084]
We present a physiologically inspired speech recognition architecture compatible and scalable with deep learning frameworks.
We show end-to-end gradient descent training leads to the emergence of neural oscillations in the central spiking neural network.
Our findings highlight the crucial inhibitory role of feedback mechanisms, such as spike frequency adaptation and recurrent connections, in regulating and synchronising neural activity to improve recognition performance.
arXiv Detail & Related papers (2024-04-22T09:40:07Z) - Approximating nonlinear functions with latent boundaries in low-rank
excitatory-inhibitory spiking networks [5.955727366271805]
We put forth a new framework for spike-based excitatory-inhibitory spiking networks.
Our work proposes a new perspective on spiking networks that may serve as a starting point for a mechanistic understanding of biological spike-based computation.
arXiv Detail & Related papers (2023-07-18T15:17:00Z) - Cross-Frequency Coupling Increases Memory Capacity in Oscillatory Neural
Networks [69.42260428921436]
Cross-frequency coupling (CFC) is associated with information integration across populations of neurons.
We construct a model of CFC which predicts a computational role for observed $theta - gamma$ oscillatory circuits in the hippocampus and cortex.
We show that the presence of CFC increases the memory capacity of a population of neurons connected by plastic synapses.
arXiv Detail & Related papers (2022-04-05T17:13:36Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
We propose a population-based digital spiking neuromorphic processor in 180nm process technology with two hierarchy populations.
The proposed approach enables the developments of biomimetic neuromorphic system and various low-power, and low-latency inference processing applications.
arXiv Detail & Related papers (2022-01-19T09:26:34Z) - Stability Analysis of Fractional Order Memristor Synapse-coupled
Hopfield Neural Network with Ring Structure [0.0]
We first present a fractional-order memristor synapse-coupling Hopfield neural network on two neurons.
We extend the model to a neural network with a ring structure that consists of n sub-network neurons, increasing the synchronization in the network.
In the n-neuron case, it is revealed that the stability depends on the structure and number of sub-networks.
arXiv Detail & Related papers (2021-09-29T12:33:23Z) - Continuous and time-discrete non-Markovian system-reservoir
interactions: Dissipative coherent quantum feedback in Liouville space [62.997667081978825]
We investigate a quantum system simultaneously exposed to two structured reservoirs.
We employ a numerically exact quasi-2D tensor network combining both diagonal and off-diagonal system-reservoir interactions with a twofold memory for continuous and discrete retardation effects.
As a possible example, we study the non-Markovian interplay between discrete photonic feedback and structured acoustic phononovian modes, resulting in emerging inter-reservoir correlations and long-living population trapping within an initially-excited two-level system.
arXiv Detail & Related papers (2020-11-10T12:38:35Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z) - Structural plasticity on an accelerated analog neuromorphic hardware
system [0.46180371154032884]
We present a strategy to achieve structural plasticity by constantly rewiring the pre- and gpostsynaptic partners.
We implemented this algorithm on the analog neuromorphic system BrainScaleS-2.
We evaluated our implementation in a simple supervised learning scenario, showing its ability to optimize the network topology.
arXiv Detail & Related papers (2019-12-27T10:15:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.