Distilling Event Sequence Knowledge From Large Language Models
- URL: http://arxiv.org/abs/2401.07237v3
- Date: Mon, 1 Jul 2024 21:43:56 GMT
- Title: Distilling Event Sequence Knowledge From Large Language Models
- Authors: Somin Wadhwa, Oktie Hassanzadeh, Debarun Bhattacharjya, Ken Barker, Jian Ni,
- Abstract summary: Event sequence models have been found to be highly effective in the analysis and prediction of events.
We use Large Language Models to generate event sequences that can effectively be used for probabilistic event model construction.
We show that our approach can generate high-quality event sequences, filling a knowledge gap in the input KG.
- Score: 17.105913216452738
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Event sequence models have been found to be highly effective in the analysis and prediction of events. Building such models requires availability of abundant high-quality event sequence data. In certain applications, however, clean structured event sequences are not available, and automated sequence extraction results in data that is too noisy and incomplete. In this work, we explore the use of Large Language Models (LLMs) to generate event sequences that can effectively be used for probabilistic event model construction. This can be viewed as a mechanism of distilling event sequence knowledge from LLMs. Our approach relies on a Knowledge Graph (KG) of event concepts with partial causal relations to guide the generative language model for causal event sequence generation. We show that our approach can generate high-quality event sequences, filling a knowledge gap in the input KG. Furthermore, we explore how the generated sequences can be leveraged to discover useful and more complex structured knowledge from pattern mining and probabilistic event models. We release our sequence generation code and evaluation framework, as well as corpus of event sequence data.
Related papers
- Improving Event Definition Following For Zero-Shot Event Detection [66.27883872707523]
Existing approaches on zero-shot event detection usually train models on datasets annotated with known event types.
We aim to improve zero-shot event detection by training models to better follow event definitions.
arXiv Detail & Related papers (2024-03-05T01:46:50Z) - Towards Out-of-Distribution Sequential Event Prediction: A Causal
Treatment [72.50906475214457]
The goal of sequential event prediction is to estimate the next event based on a sequence of historical events.
In practice, the next-event prediction models are trained with sequential data collected at one time.
We propose a framework with hierarchical branching structures for learning context-specific representations.
arXiv Detail & Related papers (2022-10-24T07:54:13Z) - NGEP: A Graph-based Event Planning Framework for Story Generation [17.049035309926637]
We propose NGEP, a novel event planning framework which generates an event sequence by performing inference on an automatically constructed event graph.
We conduct a range of experiments on multiple criteria, and the results demonstrate that our graph-based neural framework outperforms the state-of-the-art (SOTA) event planning approaches.
arXiv Detail & Related papers (2022-10-19T14:49:27Z) - Summary Markov Models for Event Sequences [23.777457032885813]
We propose a family of models for sequences of different types of events without meaningful time stamps.
The probability of observing an event type depends only on a summary of historical occurrences of its influencing set of event types.
We show that a unique minimal influencing set exists for any set of event types of interest and choice of summary function.
arXiv Detail & Related papers (2022-05-06T17:16:24Z) - Event Data Association via Robust Model Fitting for Event-based Object Tracking [66.05728523166755]
We propose a novel Event Data Association (called EDA) approach to explicitly address the event association and fusion problem.
The proposed EDA seeks for event trajectories that best fit the event data, in order to perform unifying data association and information fusion.
The experimental results show the effectiveness of EDA under challenging scenarios, such as high speed, motion blur, and high dynamic range conditions.
arXiv Detail & Related papers (2021-10-25T13:56:00Z) - Robust Event Classification Using Imperfect Real-world PMU Data [58.26737360525643]
We study robust event classification using imperfect real-world phasor measurement unit (PMU) data.
We develop a novel machine learning framework for training robust event classifiers.
arXiv Detail & Related papers (2021-10-19T17:41:43Z) - Complex Event Forecasting with Prediction Suffix Trees: Extended
Technical Report [70.7321040534471]
Complex Event Recognition (CER) systems have become popular in the past two decades due to their ability to "instantly" detect patterns on real-time streams of events.
There is a lack of methods for forecasting when a pattern might occur before such an occurrence is actually detected by a CER engine.
We present a formal framework that attempts to address the issue of Complex Event Forecasting.
arXiv Detail & Related papers (2021-09-01T09:52:31Z) - Text2Event: Controllable Sequence-to-Structure Generation for End-to-end
Event Extraction [35.39643772926177]
Event extraction is challenging due to the complex structure of event records and the semantic gap between text and event.
Traditional methods usually extract event records by decomposing the complex structure prediction task into multiple subtasks.
We propose Text2Event, a sequence-to-structure generation paradigm that can directly extract events from the text in an end-to-end manner.
arXiv Detail & Related papers (2021-06-17T04:00:18Z) - COHORTNEY: Deep Clustering for Heterogeneous Event Sequences [9.811178291117496]
Clustering of event sequences is widely applicable in domains such as healthcare, marketing, and finance.
We propose COHORTNEY as a novel deep learning method for clustering heterogeneous event sequences.
Our results show that COHORTNEY vastly outperforms in speed and cluster quality the state-of-the-art algorithm for clustering event sequences.
arXiv Detail & Related papers (2021-04-03T16:12:21Z) - Conditional Generation of Temporally-ordered Event Sequences [29.44608199294757]
We present a conditional generation model capable of capturing event cooccurrence as well as temporality of event sequences.
This single model can address both temporal ordering, sorting a given sequence of events into the order they occurred, and event infilling, predicting new events which fit into a temporally-ordered sequence of existing ones.
arXiv Detail & Related papers (2020-12-31T18:10:18Z) - Team RUC_AIM3 Technical Report at Activitynet 2020 Task 2: Exploring
Sequential Events Detection for Dense Video Captioning [63.91369308085091]
We propose a novel and simple model for event sequence generation and explore temporal relationships of the event sequence in the video.
The proposed model omits inefficient two-stage proposal generation and directly generates event boundaries conditioned on bi-directional temporal dependency in one pass.
The overall system achieves state-of-the-art performance on the dense-captioning events in video task with 9.894 METEOR score on the challenge testing set.
arXiv Detail & Related papers (2020-06-14T13:21:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.