DCDet: Dynamic Cross-based 3D Object Detector
- URL: http://arxiv.org/abs/2401.07240v2
- Date: Wed, 22 May 2024 06:51:34 GMT
- Title: DCDet: Dynamic Cross-based 3D Object Detector
- Authors: Shuai Liu, Boyang Li, Zhiyu Fang, Kai Huang,
- Abstract summary: Alternative label assignment strategies remain unexplored in 3D object detection.
We introduce a dynamic cross label assignment (DCLA) scheme, which dynamically assigns positive samples for each object from a cross-shaped region.
We also put forth a rotation-weighted Intersection over Union (RWIoU) metric to replace the widely used L1 metric in regression loss.
- Score: 9.13446805857794
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, significant progress has been made in the research of 3D object detection. However, most prior studies have focused on the utilization of center-based or anchor-based label assignment schemes. Alternative label assignment strategies remain unexplored in 3D object detection. We find that the center-based label assignment often fails to generate sufficient positive samples for training, while the anchor-based label assignment tends to encounter an imbalanced issue when handling objects of varying scales. To solve these issues, we introduce a dynamic cross label assignment (DCLA) scheme, which dynamically assigns positive samples for each object from a cross-shaped region, thus providing sufficient and balanced positive samples for training. Furthermore, to address the challenge of accurately regressing objects with varying scales, we put forth a rotation-weighted Intersection over Union (RWIoU) metric to replace the widely used L1 metric in regression loss. Extensive experiments demonstrate the generality and effectiveness of our DCLA and RWIoU-based regression loss. The Code will be available at https://github.com/Say2L/DCDet.git.
Related papers
- Approaching Outside: Scaling Unsupervised 3D Object Detection from 2D Scene [22.297964850282177]
We propose LiDAR-2D Self-paced Learning (LiSe) for unsupervised 3D detection.
RGB images serve as a valuable complement to LiDAR data, offering precise 2D localization cues.
Our framework devises a self-paced learning pipeline that incorporates adaptive sampling and weak model aggregation strategies.
arXiv Detail & Related papers (2024-07-11T14:58:49Z) - 3D Adversarial Augmentations for Robust Out-of-Domain Predictions [115.74319739738571]
We focus on improving the generalization to out-of-domain data.
We learn a set of vectors that deform the objects in an adversarial fashion.
We perform adversarial augmentation by applying the learned sample-independent vectors to the available objects when training a model.
arXiv Detail & Related papers (2023-08-29T17:58:55Z) - Revisiting Domain-Adaptive 3D Object Detection by Reliable, Diverse and
Class-balanced Pseudo-Labeling [38.07637524378327]
Unsupervised domain adaptation (DA) with the aid of pseudo labeling techniques has emerged as a crucial approach for domain-adaptive 3D object detection.
Existing DA methods suffer from a substantial drop in performance when applied to a multi-class training setting.
We propose a novel ReDB framework tailored for learning to detect all classes at once.
arXiv Detail & Related papers (2023-07-16T04:34:11Z) - Dynamic Coarse-to-Fine Learning for Oriented Tiny Object Detection [47.02127854553912]
Extreme geometry shape and limited feature of oriented tiny objects induce severe mismatch and imbalance issues.
We propose a dynamic prior along with the coarse-to-fine assigner, dubbed DCFL.
We obtain the state-of-the-art performance for one-stage detectors on the DOTA-v1.5, DOTA-v2.0, and DIOR-R datasets.
arXiv Detail & Related papers (2023-04-18T10:09:22Z) - Augment and Criticize: Exploring Informative Samples for Semi-Supervised
Monocular 3D Object Detection [64.65563422852568]
We improve the challenging monocular 3D object detection problem with a general semi-supervised framework.
We introduce a novel, simple, yet effective Augment and Criticize' framework that explores abundant informative samples from unlabeled data.
The two new detectors, dubbed 3DSeMo_DLE and 3DSeMo_FLEX, achieve state-of-the-art results with remarkable improvements for over 3.5% AP_3D/BEV (Easy) on KITTI.
arXiv Detail & Related papers (2023-03-20T16:28:15Z) - ST3D++: Denoised Self-training for Unsupervised Domain Adaptation on 3D
Object Detection [78.71826145162092]
We present a self-training method, named ST3D++, with a holistic pseudo label denoising pipeline for unsupervised domain adaptation on 3D object detection.
We equip the pseudo label generation process with a hybrid quality-aware triplet memory to improve the quality and stability of generated pseudo labels.
In the model training stage, we propose a source data assisted training strategy and a curriculum data augmentation policy.
arXiv Detail & Related papers (2021-08-15T07:49:06Z) - ST3D: Self-training for Unsupervised Domain Adaptation on 3D
ObjectDetection [78.71826145162092]
We present a new domain adaptive self-training pipeline, named ST3D, for unsupervised domain adaptation on 3D object detection from point clouds.
Our ST3D achieves state-of-the-art performance on all evaluated datasets and even surpasses fully supervised results on KITTI 3D object detection benchmark.
arXiv Detail & Related papers (2021-03-09T10:51:24Z) - Unsupervised Object Detection with LiDAR Clues [70.73881791310495]
We present the first practical method for unsupervised object detection with the aid of LiDAR clues.
In our approach, candidate object segments based on 3D point clouds are firstly generated.
Then, an iterative segment labeling process is conducted to assign segment labels and to train a segment labeling network.
The labeling process is carefully designed so as to mitigate the issue of long-tailed and open-ended distribution.
arXiv Detail & Related papers (2020-11-25T18:59:54Z) - Dense Label Encoding for Boundary Discontinuity Free Rotation Detection [69.75559390700887]
This paper explores a relatively less-studied methodology based on classification.
We propose new techniques to push its frontier in two aspects.
Experiments and visual analysis on large-scale public datasets for aerial images show the effectiveness of our approach.
arXiv Detail & Related papers (2020-11-19T05:42:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.