When Large Language Model Agents Meet 6G Networks: Perception,
Grounding, and Alignment
- URL: http://arxiv.org/abs/2401.07764v2
- Date: Fri, 16 Feb 2024 19:15:31 GMT
- Title: When Large Language Model Agents Meet 6G Networks: Perception,
Grounding, and Alignment
- Authors: Minrui Xu, Dusit Niyato, Jiawen Kang, Zehui Xiong, Shiwen Mao, Zhu
Han, Dong In Kim, and Khaled B. Letaief
- Abstract summary: We propose a split learning system for AI agents in 6G networks leveraging the collaboration between mobile devices and edge servers.
We introduce a novel model caching algorithm for LLMs within the proposed system to improve model utilization in context.
- Score: 100.58938424441027
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: AI agents based on multimodal large language models (LLMs) are expected to
revolutionize human-computer interaction and offer more personalized assistant
services across various domains like healthcare, education, manufacturing, and
entertainment. Deploying LLM agents in 6G networks enables users to access
previously expensive AI assistant services via mobile devices democratically,
thereby reducing interaction latency and better preserving user privacy.
Nevertheless, the limited capacity of mobile devices constrains the
effectiveness of deploying and executing local LLMs, which necessitates
offloading complex tasks to global LLMs running on edge servers during
long-horizon interactions. In this article, we propose a split learning system
for LLM agents in 6G networks leveraging the collaboration between mobile
devices and edge servers, where multiple LLMs with different roles are
distributed across mobile devices and edge servers to perform user-agent
interactive tasks collaboratively. In the proposed system, LLM agents are split
into perception, grounding, and alignment modules, facilitating inter-module
communications to meet extended user requirements on 6G network functions,
including integrated sensing and communication, digital twins, and
task-oriented communications. Furthermore, we introduce a novel model caching
algorithm for LLMs within the proposed system to improve model utilization in
context, thus reducing network costs of the collaborative mobile and edge LLM
agents.
Related papers
- CAMPHOR: Collaborative Agents for Multi-input Planning and High-Order Reasoning On Device [2.4100803794273005]
We introduce an on-device Small Language Models (SLMs) framework designed to handle multiple user inputs and reason over personal context locally.
CAMPHOR employs a hierarchical architecture where a high-order reasoning agent decomposes complex tasks and coordinates expert agents responsible for personal context retrieval, tool interaction, and dynamic plan generation.
By implementing parameter sharing across agents and leveraging prompt compression, we significantly reduce model size, latency, and memory usage.
arXiv Detail & Related papers (2024-10-12T07:28:10Z) - Large Language Models for Base Station Siting: Intelligent Deployment based on Prompt or Agent [62.16747639440893]
Large language models (LLMs) and their associated technologies advance, particularly in the realms of prompt engineering and agent engineering.
This approach entails the strategic use of well-crafted prompts to infuse human experience and knowledge into these sophisticated LLMs.
This integration represents the future paradigm of artificial intelligence (AI) as a service and AI for more ease.
arXiv Detail & Related papers (2024-08-07T08:43:32Z) - Mobile Edge Intelligence for Large Language Models: A Contemporary Survey [32.22789677882933]
Mobile edge intelligence (MEI) provides AI capabilities within the edge of mobile networks with improved privacy and latency relative to cloud computing.
MEI sits between on-device AI and cloud-based AI, featuring wireless communications and more powerful computing resources than end devices.
This article provides a contemporary survey on harnessing MEI for LLMs.
arXiv Detail & Related papers (2024-07-09T13:47:05Z) - Large Language Models (LLMs) Assisted Wireless Network Deployment in Urban Settings [0.21847754147782888]
Large Language Models (LLMs) have revolutionized language understanding and human-like text generation.
This paper explores new techniques to harness the power of LLMs for 6G (6th Generation) wireless communication technologies.
We introduce a novel Reinforcement Learning (RL) based framework that leverages LLMs for network deployment in wireless communications.
arXiv Detail & Related papers (2024-05-22T05:19:51Z) - WDMoE: Wireless Distributed Large Language Models with Mixture of Experts [65.57581050707738]
We propose a wireless distributed Large Language Models (LLMs) paradigm based on Mixture of Experts (MoE)
We decompose the MoE layer in LLMs by deploying the gating network and the preceding neural network layer at base station (BS) and mobile devices.
We design an expert selection policy by taking into account both the performance of the model and the end-to-end latency.
arXiv Detail & Related papers (2024-05-06T02:55:50Z) - AgentScope: A Flexible yet Robust Multi-Agent Platform [66.64116117163755]
AgentScope is a developer-centric multi-agent platform with message exchange as its core communication mechanism.
The abundant syntactic tools, built-in agents and service functions, user-friendly interfaces for application demonstration and utility monitor, zero-code programming workstation, and automatic prompt tuning mechanism significantly lower the barriers to both development and deployment.
arXiv Detail & Related papers (2024-02-21T04:11:28Z) - Large Language Model Enhanced Multi-Agent Systems for 6G Communications [94.45712802626794]
We propose a multi-agent system with customized communication knowledge and tools for solving communication related tasks using natural language.
We validate the effectiveness of the proposed multi-agent system by designing a semantic communication system.
arXiv Detail & Related papers (2023-12-13T02:35:57Z) - Pushing Large Language Models to the 6G Edge: Vision, Challenges, and
Opportunities [32.035405009895264]
Large language models (LLMs) are revolutionizing AI development and potentially shaping our future.
The status quo cloud-based deployment faces some critical challenges: 1) long response time; 2) high bandwidth costs; and 3) the violation of data privacy.
6G mobile edge computing (MEC) systems may resolve these pressing issues.
This article serves as a position paper for thoroughly identifying the motivation, challenges, and pathway for empowering LLMs at the 6G edge.
arXiv Detail & Related papers (2023-09-28T06:22:59Z) - Recommender AI Agent: Integrating Large Language Models for Interactive
Recommendations [53.76682562935373]
We introduce an efficient framework called textbfInteRecAgent, which employs LLMs as the brain and recommender models as tools.
InteRecAgent achieves satisfying performance as a conversational recommender system, outperforming general-purpose LLMs.
arXiv Detail & Related papers (2023-08-31T07:36:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.