Manifestation of the Berry connection in chiral lattice systems
- URL: http://arxiv.org/abs/2401.07946v1
- Date: Mon, 15 Jan 2024 20:19:07 GMT
- Title: Manifestation of the Berry connection in chiral lattice systems
- Authors: Francesco Di Colandrea, Nazanin Dehghan, Filippo Cardano, Alessio
D'Errico, Ebrahim Karimi
- Abstract summary: We show that in chiral-symmetric processes the Berry connection determines an observable effect on the mean chiral displacement of delocalized wavefunctions.
This finding is supported by a photonic experiment realizing a topological quantum walk, and demonstrates a new effect that can be attributed directly to the presence of a gauge field.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Aharonov-Bohm effect is a physical phenomenon where the vector potential
induces a phase shift of electron wavepackets in regions with zero magnetic
fields. It is often referred to as evidence for the physical reality of the
vector potential. A similar effect can be observed in solid-state systems,
where the Berry connection can influence electron dynamics. Here, we show that
in chiral-symmetric processes the Berry connection determines an observable
effect on the mean chiral displacement of delocalized wavefunctions. This
finding is supported by a photonic experiment realizing a topological quantum
walk, and demonstrates a new effect that can be attributed directly to the
presence of a gauge field.
Related papers
- Non-relativistic quantum particles interacting with pseudoharmonic-type
potential under flux field in a topological defect geometry [0.0]
We investigate the quantum motions of non-relativistic particles interacting with a potential in the presence of the Aharonov-Bohm flux field.
Our findings reveal that the eigenvalue solutions are significantly influenced by the topological defect characterized by the parameter $beta$.
This influence manifests as a shift in the energy spectrum, drawing parallels to the gravitational analog of the Aharonov-Bohm effect.
arXiv Detail & Related papers (2023-02-01T17:45:02Z) - Aharonov-Bohm effect in phase space [0.0]
We characterize for the first time the Aharonov-Bohm effect within two different formalisms of quantum mechanics.
The aim is to obtain a consistent description of the quantum system by means of the quasiprobability Wigner function.
We study the Aharonov-Bohm effect within them for two specific cases: One determined by a non-zero electric potential, and another determined by a non-zero magnetic vector potential.
arXiv Detail & Related papers (2022-11-23T18:38:58Z) - Probing and harnessing photonic Fermi arc surface states using
light-matter interactions [62.997667081978825]
We show how to image the Fermi arcs by studying the spontaneous decay of one or many emitters coupled to the system's border.
We demonstrate that the Fermi arc surface states can act as a robust quantum link.
arXiv Detail & Related papers (2022-10-17T13:17:55Z) - Coherence and realism in the Aharonov-Bohm effect [0.0]
The Aharonov-Bohm effect is a fundamental topological phenomenon with a wide range of applications.
We analyze this effect using an entropic measure known as realism, originally introduced as a quantifier of a system's degree of reality.
arXiv Detail & Related papers (2022-09-01T14:10:06Z) - Gauge invariance of the local phase in the Aharonov-Bohm interference:
quantum electrodynamic approach [0.0]
In the Aharonov-Bohm (AB) effect, interference fringes are observed for a charged particle in the absence of the local overlap with the external electromagnetic field.
This notion of the apparent nonlocality of the interaction or the significant role of the potential has recently been challenged and are under debate.
The quantum electrodynamic approach provides a microscopic picture of the characteristics of the interaction between a charge and an external field.
arXiv Detail & Related papers (2022-06-17T08:31:51Z) - Self-oscillating pump in a topological dissipative atom-cavity system [55.41644538483948]
We report on an emergent mechanism for pumping in a quantum gas coupled to an optical resonator.
Due to dissipation, the cavity field evolves between its two quadratures, each corresponding to a different centrosymmetric crystal configuration.
This self-oscillation results in a time-periodic potential analogous to that describing the transport of electrons in topological tight-binding models.
arXiv Detail & Related papers (2021-12-21T19:57:30Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - The Aharonov Bohm effect as a material phenomenon [0.0]
An experiment to observe the Aharonov-Bohm effect is discussed.
An analysis of an experiment with a solenoid shielded by a superconducting shell is given.
arXiv Detail & Related papers (2021-09-25T21:25:40Z) - Photon-mediated interactions near a Dirac photonic crystal slab [68.8204255655161]
We develop a theory of dipole radiation near photonic Dirac points in realistic structures.
We find positions where the nature of the collective interactions change from being coherent to dissipative ones.
Our results significantly improve the knowledge of Dirac light-matter interfaces.
arXiv Detail & Related papers (2021-07-01T14:21:49Z) - Bloch-Landau-Zener dynamics induced by a synthetic field in a photonic
quantum walk [52.77024349608834]
We realize a photonic quantum walk in the presence of a synthetic gauge field.
We investigate intriguing system dynamics characterized by the interplay between Bloch oscillations and Landau-Zener transitions.
arXiv Detail & Related papers (2020-11-11T16:35:41Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.