ProvNeRF: Modeling per Point Provenance in NeRFs as a Stochastic Field
- URL: http://arxiv.org/abs/2401.08140v3
- Date: Fri, 01 Nov 2024 06:12:07 GMT
- Title: ProvNeRF: Modeling per Point Provenance in NeRFs as a Stochastic Field
- Authors: Kiyohiro Nakayama, Mikaela Angelina Uy, Yang You, Ke Li, Leonidas J. Guibas,
- Abstract summary: We propose an approach that models the bfprovenance for each point -- i.e., the locations where it is likely visible -- of NeRFs as a text field.
We show that modeling per-point provenance during the NeRF optimization enriches the model with information on leading to improvements in novel view synthesis and uncertainty estimation.
- Score: 52.09661042881063
- License:
- Abstract: Neural radiance fields (NeRFs) have gained popularity with multiple works showing promising results across various applications. However, to the best of our knowledge, existing works do not explicitly model the distribution of training camera poses, or consequently the triangulation quality, a key factor affecting reconstruction quality dating back to classical vision literature. We close this gap with ProvNeRF, an approach that models the \textbf{provenance} for each point -- i.e., the locations where it is likely visible -- of NeRFs as a stochastic field. We achieve this by extending implicit maximum likelihood estimation (IMLE) to functional space with an optimizable objective. We show that modeling per-point provenance during the NeRF optimization enriches the model with information on triangulation leading to improvements in novel view synthesis and uncertainty estimation under the challenging sparse, unconstrained view setting against competitive baselines.
Related papers
- OPONeRF: One-Point-One NeRF for Robust Neural Rendering [70.56874833759241]
We propose a One-Point-One NeRF (OPONeRF) framework for robust scene rendering.
Small but unpredictable perturbations such as object movements, light changes and data contaminations broadly exist in real-life 3D scenes.
Experimental results show that our OPONeRF outperforms state-of-the-art NeRFs on various evaluation metrics.
arXiv Detail & Related papers (2024-09-30T07:49:30Z) - IOVS4NeRF:Incremental Optimal View Selection for Large-Scale NeRFs [3.9248546555042365]
This paper introduces an innovative incremental optimal view selection framework, IOVS4NeRF, designed to model a 3D scene within a restricted input budget.
By selecting views that offer the highest information gain, the quality of novel view synthesis can be enhanced with minimal additional resources.
arXiv Detail & Related papers (2024-07-26T09:11:25Z) - SG-NeRF: Neural Surface Reconstruction with Scene Graph Optimization [16.460851701725392]
We present a novel approach that optimize radiance fields with scene graphs to mitigate the influence of outlier poses.
Our method incorporates an adaptive inlier-outlier confidence estimation scheme based on scene graphs.
We also introduce an effective intersection-over-union (IoU) loss to optimize the camera pose and surface geometry.
arXiv Detail & Related papers (2024-07-17T15:50:17Z) - Invertible Neural Warp for NeRF [29.00183106905031]
This paper tackles the simultaneous optimization of pose and Neural Radiance Fields (NeRF)
We propose a novel over parameterized representation that models camera poses as learnable rigid warp functions.
We present results on synthetic and real-world datasets, and demonstrate that our approach outperforms existing baselines in terms of pose estimation and high-fidelity reconstruction.
arXiv Detail & Related papers (2024-07-17T07:14:08Z) - 3D Visibility-aware Generalizable Neural Radiance Fields for Interacting
Hands [51.305421495638434]
Neural radiance fields (NeRFs) are promising 3D representations for scenes, objects, and humans.
This paper proposes a generalizable visibility-aware NeRF framework for interacting hands.
Experiments on the Interhand2.6M dataset demonstrate that our proposed VA-NeRF outperforms conventional NeRFs significantly.
arXiv Detail & Related papers (2024-01-02T00:42:06Z) - PNeRFLoc: Visual Localization with Point-based Neural Radiance Fields [54.8553158441296]
We propose a novel visual localization framework, ie, PNeRFLoc, based on a unified point-based representation.
On the one hand, PNeRFLoc supports the initial pose estimation by matching 2D and 3D feature points.
On the other hand, it also enables pose refinement with novel view synthesis using rendering-based optimization.
arXiv Detail & Related papers (2023-12-17T08:30:00Z) - LU-NeRF: Scene and Pose Estimation by Synchronizing Local Unposed NeRFs [56.050550636941836]
A critical obstacle preventing NeRF models from being deployed broadly in the wild is their reliance on accurate camera poses.
We propose a novel approach, LU-NeRF, that jointly estimates camera poses and neural fields with relaxed assumptions on pose configuration.
We show our LU-NeRF pipeline outperforms prior attempts at unposed NeRF without making restrictive assumptions on the pose prior.
arXiv Detail & Related papers (2023-06-08T17:56:22Z) - CLONeR: Camera-Lidar Fusion for Occupancy Grid-aided Neural
Representations [77.90883737693325]
This paper proposes CLONeR, which significantly improves upon NeRF by allowing it to model large outdoor driving scenes observed from sparse input sensor views.
This is achieved by decoupling occupancy and color learning within the NeRF framework into separate Multi-Layer Perceptrons (MLPs) trained using LiDAR and camera data, respectively.
In addition, this paper proposes a novel method to build differentiable 3D Occupancy Grid Maps (OGM) alongside the NeRF model, and leverage this occupancy grid for improved sampling of points along a ray for rendering in metric space.
arXiv Detail & Related papers (2022-09-02T17:44:50Z) - Stochastic Neural Radiance Fields:Quantifying Uncertainty in Implicit 3D
Representations [19.6329380710514]
Uncertainty quantification is a long-standing problem in Machine Learning.
We propose Neural Radiance Fields (S-NeRF), a generalization of standard NeRF that learns a probability distribution over all the possible fields modeling the scene.
S-NeRF is able to provide more reliable predictions and confidence values than generic approaches previously proposed for uncertainty estimation in other domains.
arXiv Detail & Related papers (2021-09-05T16:56:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.