A Generative Adversarial Attack for Multilingual Text Classifiers
- URL: http://arxiv.org/abs/2401.08255v1
- Date: Tue, 16 Jan 2024 10:14:27 GMT
- Title: A Generative Adversarial Attack for Multilingual Text Classifiers
- Authors: Tom Roth, Inigo Jauregi Unanue, Alsharif Abuadbba, Massimo Piccardi
- Abstract summary: We propose an approach to fine-tune a multilingual paraphrase model with an adversarial objective.
The training objective incorporates a set of pre-trained models to ensure text quality and language consistency.
The experimental validation over two multilingual datasets and five languages has shown the effectiveness of the proposed approach.
- Score: 10.993289209465129
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current adversarial attack algorithms, where an adversary changes a text to
fool a victim model, have been repeatedly shown to be effective against text
classifiers. These attacks, however, generally assume that the victim model is
monolingual and cannot be used to target multilingual victim models, a
significant limitation given the increased use of these models. For this
reason, in this work we propose an approach to fine-tune a multilingual
paraphrase model with an adversarial objective so that it becomes able to
generate effective adversarial examples against multilingual classifiers. The
training objective incorporates a set of pre-trained models to ensure text
quality and language consistency of the generated text. In addition, all the
models are suitably connected to the generator by vocabulary-mapping matrices,
allowing for full end-to-end differentiability of the overall training
pipeline. The experimental validation over two multilingual datasets and five
languages has shown the effectiveness of the proposed approach compared to
existing baselines, particularly in terms of query efficiency. We also provide
a detailed analysis of the generated attacks and discuss limitations and
opportunities for future research.
Related papers
- Few-Shot Detection of Machine-Generated Text using Style Representations [4.326503887981912]
Language models that convincingly mimic human writing pose a significant risk of abuse.
We propose to leverage representations of writing style estimated from human-authored text.
We find that features effective at distinguishing among human authors are also effective at distinguishing human from machine authors.
arXiv Detail & Related papers (2024-01-12T17:26:51Z) - Multilingual Conceptual Coverage in Text-to-Image Models [98.80343331645626]
"Conceptual Coverage Across Languages" (CoCo-CroLa) is a technique for benchmarking the degree to which any generative text-to-image system provides multilingual parity to its training language in terms of tangible nouns.
For each model we can assess "conceptual coverage" of a given target language relative to a source language by comparing the population of images generated for a series of tangible nouns in the source language to the population of images generated for each noun under translation in the target language.
arXiv Detail & Related papers (2023-06-02T17:59:09Z) - Beyond Contrastive Learning: A Variational Generative Model for
Multilingual Retrieval [109.62363167257664]
We propose a generative model for learning multilingual text embeddings.
Our model operates on parallel data in $N$ languages.
We evaluate this method on a suite of tasks including semantic similarity, bitext mining, and cross-lingual question retrieval.
arXiv Detail & Related papers (2022-12-21T02:41:40Z) - Improving the Cross-Lingual Generalisation in Visual Question Answering [40.86774711775718]
multilingual vision-language pretrained models show poor cross-lingual generalisation when applied to non-English data.
In this work, we explore the poor performance of these models on a zero-shot cross-lingual visual question answering (VQA) task.
We improve cross-lingual transfer with three strategies: (1) we introduce a linguistic prior objective to augment the cross-entropy loss with a similarity-based loss to guide the model during training, (2) we learn a task-specific subnetwork that improves cross-lingual generalisation and reduces variance without model modification, and (3) we augment training examples using synthetic code
arXiv Detail & Related papers (2022-09-07T08:07:43Z) - Adversarial GLUE: A Multi-Task Benchmark for Robustness Evaluation of
Language Models [86.02610674750345]
Adversarial GLUE (AdvGLUE) is a new multi-task benchmark to explore and evaluate the vulnerabilities of modern large-scale language models under various types of adversarial attacks.
We apply 14 adversarial attack methods to GLUE tasks to construct AdvGLUE, which is further validated by humans for reliable annotations.
All the language models and robust training methods we tested perform poorly on AdvGLUE, with scores lagging far behind the benign accuracy.
arXiv Detail & Related papers (2021-11-04T12:59:55Z) - A Differentiable Language Model Adversarial Attack on Text Classifiers [10.658675415759697]
We propose a new black-box sentence-level attack for natural language processing.
Our method fine-tunes a pre-trained language model to generate adversarial examples.
We show that the proposed attack outperforms competitors on a diverse set of NLP problems for both computed metrics and human evaluation.
arXiv Detail & Related papers (2021-07-23T14:43:13Z) - Learning to Attack: Towards Textual Adversarial Attacking in Real-world
Situations [81.82518920087175]
Adversarial attacking aims to fool deep neural networks with adversarial examples.
We propose a reinforcement learning based attack model, which can learn from attack history and launch attacks more efficiently.
arXiv Detail & Related papers (2020-09-19T09:12:24Z) - Contextualized Perturbation for Textual Adversarial Attack [56.370304308573274]
Adversarial examples expose the vulnerabilities of natural language processing (NLP) models.
This paper presents CLARE, a ContextuaLized AdversaRial Example generation model that produces fluent and grammatical outputs.
arXiv Detail & Related papers (2020-09-16T06:53:15Z) - Leveraging Adversarial Training in Self-Learning for Cross-Lingual Text
Classification [52.69730591919885]
We present a semi-supervised adversarial training process that minimizes the maximal loss for label-preserving input perturbations.
We observe significant gains in effectiveness on document and intent classification for a diverse set of languages.
arXiv Detail & Related papers (2020-07-29T19:38:35Z) - A Deep Reinforced Model for Zero-Shot Cross-Lingual Summarization with
Bilingual Semantic Similarity Rewards [40.17497211507507]
Cross-lingual text summarization is a practically important but under-explored task.
We propose an end-to-end cross-lingual text summarization model.
arXiv Detail & Related papers (2020-06-27T21:51:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.