Explaining Time Series via Contrastive and Locally Sparse Perturbations
- URL: http://arxiv.org/abs/2401.08552v2
- Date: Mon, 29 Jan 2024 04:44:46 GMT
- Title: Explaining Time Series via Contrastive and Locally Sparse Perturbations
- Authors: Zichuan Liu, Yingying Zhang, Tianchun Wang, Zefan Wang, Dongsheng Luo,
Mengnan Du, Min Wu, Yi Wang, Chunlin Chen, Lunting Fan, Qingsong Wen
- Abstract summary: ContraLSP is a sparse model that introduces counterfactual samples to build uninformative perturbations but keeps distribution using contrastive learning.
Empirical studies on both synthetic and real-world datasets show that ContraLSP outperforms state-of-the-art models.
- Score: 45.055327583283315
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Explaining multivariate time series is a compound challenge, as it requires
identifying important locations in the time series and matching complex
temporal patterns. Although previous saliency-based methods addressed the
challenges, their perturbation may not alleviate the distribution shift issue,
which is inevitable especially in heterogeneous samples. We present ContraLSP,
a locally sparse model that introduces counterfactual samples to build
uninformative perturbations but keeps distribution using contrastive learning.
Furthermore, we incorporate sample-specific sparse gates to generate more
binary-skewed and smooth masks, which easily integrate temporal trends and
select the salient features parsimoniously. Empirical studies on both synthetic
and real-world datasets show that ContraLSP outperforms state-of-the-art
models, demonstrating a substantial improvement in explanation quality for time
series data. The source code is available at
\url{https://github.com/zichuan-liu/ContraLSP}.
Related papers
- TSLANet: Rethinking Transformers for Time Series Representation Learning [19.795353886621715]
Time series data is characterized by its intrinsic long and short-range dependencies.
We introduce a novel Time Series Lightweight Network (TSLANet) as a universal convolutional model for diverse time series tasks.
Our experiments demonstrate that TSLANet outperforms state-of-the-art models in various tasks spanning classification, forecasting, and anomaly detection.
arXiv Detail & Related papers (2024-04-12T13:41:29Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - CLeaRForecast: Contrastive Learning of High-Purity Representations for
Time Series Forecasting [2.5816901096123863]
Time series forecasting (TSF) holds significant importance in modern society, spanning numerous domains.
Previous representation learning-based TSF algorithms typically embrace a contrastive learning paradigm featuring segregated trend-periodicity representations.
We propose CLeaRForecast, a novel contrastive learning framework to learn high-purity time series representations with proposed sample, feature, and architecture purifying methods.
arXiv Detail & Related papers (2023-12-10T04:37:43Z) - Time-series Generation by Contrastive Imitation [87.51882102248395]
We study a generative framework that seeks to combine the strengths of both: Motivated by a moment-matching objective to mitigate compounding error, we optimize a local (but forward-looking) transition policy.
At inference, the learned policy serves as the generator for iterative sampling, and the learned energy serves as a trajectory-level measure for evaluating sample quality.
arXiv Detail & Related papers (2023-11-02T16:45:25Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
Time series forecasting has been a widely explored task of great importance in many applications.
It is common that real-world time series data are recorded in a short time period, which results in a big gap between the deep model and the limited and noisy time series.
We propose to address the time series forecasting problem with generative modeling and propose a bidirectional variational auto-encoder equipped with diffusion, denoise, and disentanglement.
arXiv Detail & Related papers (2023-01-08T12:20:46Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - PIETS: Parallelised Irregularity Encoders for Forecasting with
Heterogeneous Time-Series [5.911865723926626]
Heterogeneity and irregularity of multi-source data sets present a significant challenge to time-series analysis.
In this work, we design a novel architecture, PIETS, to model heterogeneous time-series.
We show that PIETS is able to effectively model heterogeneous temporal data and outperforms other state-of-the-art approaches in the prediction task.
arXiv Detail & Related papers (2021-09-30T20:01:19Z) - Heteroscedastic Temporal Variational Autoencoder For Irregular Time Series [15.380441563675243]
We propose a new deep learning framework for irregularly sampled time series that we call the Heteroscedastic Temporal Variational Autoencoder (HeTVAE)
HeTVAE includes a novel input layer to encode information about input observation sparsity, a temporal VAE architecture to propagate uncertainty due to input sparsity, and a heteroscedastic output layer to enable variable uncertainty in output due to variables.
Our results show that the proposed architecture is better able to reflect variable uncertainty through time sparse and irregular sampling than a range of baseline and traditional models, as well as recently proposed deep latent variable models that use
arXiv Detail & Related papers (2021-07-23T16:59:21Z) - Unsupervised Representation Learning for Time Series with Temporal
Neighborhood Coding [8.45908939323268]
We propose a self-supervised framework for learning generalizable representations for non-stationary time series.
Our motivation stems from the medical field, where the ability to model the dynamic nature of time series data is especially valuable.
arXiv Detail & Related papers (2021-06-01T19:53:24Z) - Synergetic Learning of Heterogeneous Temporal Sequences for
Multi-Horizon Probabilistic Forecasting [48.8617204809538]
We propose Variational Synergetic Multi-Horizon Network (VSMHN), a novel deep conditional generative model.
To learn complex correlations across heterogeneous sequences, a tailored encoder is devised to combine the advances in deep point processes models and variational recurrent neural networks.
Our model can be trained effectively using variational inference and generates predictions with Monte-Carlo simulation.
arXiv Detail & Related papers (2021-01-31T11:00:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.