WAVES: Benchmarking the Robustness of Image Watermarks
- URL: http://arxiv.org/abs/2401.08573v3
- Date: Fri, 7 Jun 2024 03:38:35 GMT
- Title: WAVES: Benchmarking the Robustness of Image Watermarks
- Authors: Bang An, Mucong Ding, Tahseen Rabbani, Aakriti Agrawal, Yuancheng Xu, Chenghao Deng, Sicheng Zhu, Abdirisak Mohamed, Yuxin Wen, Tom Goldstein, Furong Huang,
- Abstract summary: WAVES (Watermark Analysis Via Enhanced Stress-testing) is a benchmark for assessing image watermark robustness.
We integrate detection and identification tasks and establish a standardized evaluation protocol comprised of a diverse range of stress tests.
We envision WAVES as a toolkit for the future development of robust watermarks.
- Score: 67.955140223443
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the burgeoning age of generative AI, watermarks act as identifiers of provenance and artificial content. We present WAVES (Watermark Analysis Via Enhanced Stress-testing), a benchmark for assessing image watermark robustness, overcoming the limitations of current evaluation methods. WAVES integrates detection and identification tasks and establishes a standardized evaluation protocol comprised of a diverse range of stress tests. The attacks in WAVES range from traditional image distortions to advanced, novel variations of diffusive, and adversarial attacks. Our evaluation examines two pivotal dimensions: the degree of image quality degradation and the efficacy of watermark detection after attacks. Our novel, comprehensive evaluation reveals previously undetected vulnerabilities of several modern watermarking algorithms. We envision WAVES as a toolkit for the future development of robust watermarks. The project is available at https://wavesbench.github.io/
Related papers
- AI-generated Image Detection: Passive or Watermark? [4.936341173296691]
We develop the first comprehensive benchmark to compare the effectiveness, robustness, and efficiency of passive and watermark-based detectors.
We evaluate five passive detectors and four watermark-based detectors against eight types of common perturbations and three types of adversarial perturbations.
arXiv Detail & Related papers (2024-11-20T18:59:58Z) - An undetectable watermark for generative image models [65.31658824274894]
We present the first undetectable watermarking scheme for generative image models.
In particular, an undetectable watermark does not degrade image quality under any efficiently computable metric.
Our scheme works by selecting the initial latents of a diffusion model using a pseudorandom error-correcting code.
arXiv Detail & Related papers (2024-10-09T18:33:06Z) - Certifiably Robust Image Watermark [57.546016845801134]
Generative AI raises many societal concerns such as boosting disinformation and propaganda campaigns.
Watermarking AI-generated content is a key technology to address these concerns.
We propose the first image watermarks with certified robustness guarantees against removal and forgery attacks.
arXiv Detail & Related papers (2024-07-04T17:56:04Z) - Latent Watermark: Inject and Detect Watermarks in Latent Diffusion Space [7.082806239644562]
Existing methods face the dilemma of image quality and watermark robustness.
Watermarks with superior image quality usually have inferior robustness against attacks such as blurring and JPEG compression.
We propose Latent Watermark, which injects and detects watermarks in the latent diffusion space.
arXiv Detail & Related papers (2024-03-30T03:19:50Z) - RAW: A Robust and Agile Plug-and-Play Watermark Framework for AI-Generated Images with Provable Guarantees [33.61946642460661]
This paper introduces a robust and agile watermark detection framework, dubbed as RAW.
We employ a classifier that is jointly trained with the watermark to detect the presence of the watermark.
We show that the framework provides provable guarantees regarding the false positive rate for misclassifying a watermarked image.
arXiv Detail & Related papers (2024-01-23T22:00:49Z) - Robustness of AI-Image Detectors: Fundamental Limits and Practical
Attacks [47.04650443491879]
We analyze the robustness of various AI-image detectors including watermarking and deepfake detectors.
We show that watermarking methods are vulnerable to spoofing attacks where the attacker aims to have real images identified as watermarked ones.
arXiv Detail & Related papers (2023-09-29T18:30:29Z) - Towards Robust Model Watermark via Reducing Parametric Vulnerability [57.66709830576457]
backdoor-based ownership verification becomes popular recently, in which the model owner can watermark the model.
We propose a mini-max formulation to find these watermark-removed models and recover their watermark behavior.
Our method improves the robustness of the model watermarking against parametric changes and numerous watermark-removal attacks.
arXiv Detail & Related papers (2023-09-09T12:46:08Z) - Invisible Image Watermarks Are Provably Removable Using Generative AI [47.25747266531665]
Invisible watermarks safeguard images' copyrights by embedding hidden messages only detectable by owners.
We propose a family of regeneration attacks to remove these invisible watermarks.
The proposed attack method first adds random noise to an image to destroy the watermark and then reconstructs the image.
arXiv Detail & Related papers (2023-06-02T23:29:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.