Generalized Face Liveness Detection via De-fake Face Generator
- URL: http://arxiv.org/abs/2401.09006v2
- Date: Wed, 11 Dec 2024 09:07:25 GMT
- Title: Generalized Face Liveness Detection via De-fake Face Generator
- Authors: Xingming Long, Jie Zhang, Shiguang Shan,
- Abstract summary: Previous Face Anti-spoofing (FAS) methods face the challenge of generalizing to unseen domains.
We propose an Anomalous cue Guided FAS (AG-FAS) method, which can effectively leverage large-scale additional real faces.
Our method achieves state-of-the-art results under cross-domain evaluations with unseen scenarios and unknown presentation attacks.
- Score: 52.23271636362843
- License:
- Abstract: Previous Face Anti-spoofing (FAS) methods face the challenge of generalizing to unseen domains, mainly because most existing FAS datasets are relatively small and lack data diversity. Thanks to the development of face recognition in the past decade, numerous real face images are available publicly, which are however neglected previously by the existing literature. In this paper, we propose an Anomalous cue Guided FAS (AG-FAS) method, which can effectively leverage large-scale additional real faces for improving model generalization via a De-fake Face Generator (DFG). Specifically, by training on a large-scale real face only dataset, the generator obtains the knowledge of what a real face should be like, and thus has the capability of generating a "real" version of any input face image. Consequently, the difference between the input face and the generated "real" face can be treated as cues of attention for the fake feature learning. With the above ideas, an Off-real Attention Network (OA-Net) is proposed which allocates its attention to the spoof region of the input according to the anomalous cue. Extensive experiments on a total of nine public datasets show our method achieves state-of-the-art results under cross-domain evaluations with unseen scenarios and unknown presentation attacks. Besides, we provide theoretical analysis demonstrating the effectiveness of the proposed anomalous cues.
Related papers
- DiffusionFace: Towards a Comprehensive Dataset for Diffusion-Based Face Forgery Analysis [71.40724659748787]
DiffusionFace is the first diffusion-based face forgery dataset.
It covers various forgery categories, including unconditional and Text Guide facial image generation, Img2Img, Inpaint, and Diffusion-based facial exchange algorithms.
It provides essential metadata and a real-world internet-sourced forgery facial image dataset for evaluation.
arXiv Detail & Related papers (2024-03-27T11:32:44Z) - Real Face Foundation Representation Learning for Generalized Deepfake
Detection [74.4691295738097]
The emergence of deepfake technologies has become a matter of social concern as they pose threats to individual privacy and public security.
It is almost impossible to collect sufficient representative fake faces, and it is hard for existing detectors to generalize to all types of manipulation.
We propose Real Face Foundation Representation Learning (RFFR), which aims to learn a general representation from large-scale real face datasets.
arXiv Detail & Related papers (2023-03-15T08:27:56Z) - Learning Facial Liveness Representation for Domain Generalized Face
Anti-spoofing [25.07432145233952]
Face anti-spoofing (FAS) aims at distinguishing face spoof attacks from the authentic ones.
It is not practical to assume that the type of spoof attacks would be known in advance.
We propose a deep learning model for addressing the aforementioned domain-generalized face anti-spoofing task.
arXiv Detail & Related papers (2022-08-16T16:13:24Z) - On the (Limited) Generalization of MasterFace Attacks and Its Relation
to the Capacity of Face Representations [11.924504853735645]
We study the generalizability of MasterFace attacks in empirical and theoretical investigations.
We estimate the face capacity and the maximum MasterFace coverage under the assumption that identities in the face space are well separated.
We conclude that MasterFaces should not be seen as a threat to face recognition systems but as a tool to enhance the robustness of face recognition models.
arXiv Detail & Related papers (2022-03-23T13:02:41Z) - End2End Occluded Face Recognition by Masking Corrupted Features [82.27588990277192]
State-of-the-art general face recognition models do not generalize well to occluded face images.
This paper presents a novel face recognition method that is robust to occlusions based on a single end-to-end deep neural network.
Our approach, named FROM (Face Recognition with Occlusion Masks), learns to discover the corrupted features from the deep convolutional neural networks, and clean them by the dynamically learned masks.
arXiv Detail & Related papers (2021-08-21T09:08:41Z) - DotFAN: A Domain-transferred Face Augmentation Network for Pose and
Illumination Invariant Face Recognition [94.96686189033869]
We propose a 3D model-assisted domain-transferred face augmentation network (DotFAN)
DotFAN can generate a series of variants of an input face based on the knowledge distilled from existing rich face datasets collected from other domains.
Experiments show that DotFAN is beneficial for augmenting small face datasets to improve their within-class diversity.
arXiv Detail & Related papers (2020-02-23T08:16:34Z) - Dual-Attention GAN for Large-Pose Face Frontalization [59.689836951934694]
We present a novel Dual-Attention Generative Adversarial Network (DA-GAN) for photo-realistic face frontalization.
Specifically, a self-attention-based generator is introduced to integrate local features with their long-range dependencies.
A novel face-attention-based discriminator is applied to emphasize local features of face regions.
arXiv Detail & Related papers (2020-02-17T20:00:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.