Narratives of Collective Action in YouTube's Discourse on Veganism
- URL: http://arxiv.org/abs/2401.09210v2
- Date: Thu, 28 Mar 2024 11:39:59 GMT
- Title: Narratives of Collective Action in YouTube's Discourse on Veganism
- Authors: Arianna Pera, Luca Maria Aiello,
- Abstract summary: We use natural language processing to operationalize a theoretical framework of moral narratives specific to the vegan movement.
Our analysis reveals that several narrative types, as defined by the theory, are empirically present in the data.
Video narratives advocating social fight, whether through protest or through efforts to convert others to the cause, are associated with a stronger sense of collective action in the respective comments.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Narratives can be powerful tools for inspiring action on pressing societal issues such as climate change. While social science theories offer frameworks for understanding the narratives that arise within collective movements, these are rarely applied to the vast data available from social media platforms, which play a significant role in shaping public opinion and mobilizing collective action. This gap in the empirical evaluation of online narratives limits our understanding of their relationship with public response. In this study, we focus on plant-based diets as a form of pro-environmental action and employ natural language processing to operationalize a theoretical framework of moral narratives specific to the vegan movement. We apply this framework to narratives found in YouTube videos promoting environmental initiatives such as Veganuary, Meatless March, and No Meat May. Our analysis reveals that several narrative types, as defined by the theory, are empirically present in the data. To identify narratives with the potential to elicit positive public engagement, we used text processing to estimate the proportion of comments supporting collective action across narrative types. Video narratives advocating social fight, whether through protest or through efforts to convert others to the cause, are associated with a stronger sense of collective action in the respective comments. These narrative types also demonstrate increased semantic coherence and alignment between the message and public response, markers typically associated with successful collective action. Our work offers new insights into the complex factors that influence the emergence of collective action, thereby informing the development of effective communication strategies within social movements.
Related papers
- Causal Modeling of Climate Activism on Reddit [4.999814847776098]
We develop a comprehensive causal model of how and why Reddit users engage with activist communities driving mass climate protests.
We find that among users interested in climate change, participation in online activist communities is indeed influenced by direct interactions with activists.
Among people aware of climate change, left-leaning people from lower socioeconomic backgrounds are particularly represented in online activist groups.
arXiv Detail & Related papers (2024-10-14T14:41:09Z) - Community Shaping in the Digital Age: A Temporal Fusion Framework for Analyzing Discourse Fragmentation in Online Social Networks [45.58331196717468]
This research presents a framework for analyzing the dynamics of online communities in social media platforms.
By combining text classification and dynamic social network analysis, we uncover mechanisms driving community formation and evolution.
arXiv Detail & Related papers (2024-09-18T03:03:02Z) - Modeling Information Narrative Detection and Evolution on Telegram during the Russia-Ukraine War [6.732843525962766]
In February 2022, the Russian Federation's full-scale invasion of Ukraine took place.
A multitude of information narratives emerged within both pro-Russian and pro-Ukrainian communities online.
This study aims to model narrative evolution and uncover the underlying mechanisms driving them.
arXiv Detail & Related papers (2024-09-12T01:18:57Z) - Framing Social Movements on Social Media: Unpacking Diagnostic, Prognostic, and Motivational Strategies [13.457215856735308]
We focus on Twitter messages from social movements surrounding three issues in 2018-2019 (guns, immigration, and LGBTQ rights)
We create a codebook, annotated dataset, and computational models to detect diagnostic (problem identification and attribution), prognostic (proposed solutions and tactics), and motivational (calls to action) framing strategies.
For example, we show that diagnostic framing is more common in replies than original broadcast posts, and that social movement organizations focus much more on prognostic and motivational framing than journalists and ordinary citizens.
arXiv Detail & Related papers (2024-06-19T20:31:34Z) - Echo-chambers and Idea Labs: Communication Styles on Twitter [51.13560635563004]
This paper investigates the communication styles and structures of Twitter (X) communities within the vaccination context.
By shedding light on the nuanced nature of communication within social networks, this study emphasizes the significance of understanding the diversity of perspectives within online communities.
arXiv Detail & Related papers (2024-03-28T13:55:51Z) - Social Convos: Capturing Agendas and Emotions on Social Media [1.6385815610837167]
We present a novel approach to extract influence indicators from messages circulating among groups of users discussing particular topics.
We focus on two influence indicators: the (control of) agenda and the use of emotional language.
arXiv Detail & Related papers (2024-02-23T19:14:09Z) - Decoding the Silent Majority: Inducing Belief Augmented Social Graph
with Large Language Model for Response Forecasting [74.68371461260946]
SocialSense is a framework that induces a belief-centered graph on top of an existent social network, along with graph-based propagation to capture social dynamics.
Our method surpasses existing state-of-the-art in experimental evaluations for both zero-shot and supervised settings.
arXiv Detail & Related papers (2023-10-20T06:17:02Z) - Discovering collective narratives shifts in online discussions [3.6231158294409482]
We propose a systematic narrative discovery framework that fills the gap by combining change point detection, semantic role labeling (SRL), and automatic aggregation of narrative fragments into narrative networks.
We evaluate our model with synthetic and empirical data two-Twitter corpora about COVID-19 and 2017 French Election.
Results demonstrate that our approach can recover major narrative shifts that correspond to the major events.
arXiv Detail & Related papers (2023-07-17T15:00:04Z) - This Must Be the Place: Predicting Engagement of Online Communities in a
Large-scale Distributed Campaign [70.69387048368849]
We study the behavior of communities with millions of active members.
We develop a hybrid model, combining textual cues, community meta-data, and structural properties.
We demonstrate the applicability of our model through Reddit's r/place a large-scale online experiment.
arXiv Detail & Related papers (2022-01-14T08:23:16Z) - SSAGCN: Social Soft Attention Graph Convolution Network for Pedestrian
Trajectory Prediction [59.064925464991056]
We propose one new prediction model named Social Soft Attention Graph Convolution Network (SSAGCN)
SSAGCN aims to simultaneously handle social interactions among pedestrians and scene interactions between pedestrians and environments.
Experiments on public available datasets prove the effectiveness of SSAGCN and have achieved state-of-the-art results.
arXiv Detail & Related papers (2021-12-05T01:49:18Z) - Learning Triadic Belief Dynamics in Nonverbal Communication from Videos [81.42305032083716]
Nonverbal communication can convey rich social information among agents.
In this paper, we incorporate different nonverbal communication cues to represent, model, learn, and infer agents' mental states.
arXiv Detail & Related papers (2021-04-07T00:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.