Cross-lingual Offensive Language Detection: A Systematic Review of
Datasets, Transfer Approaches and Challenges
- URL: http://arxiv.org/abs/2401.09244v1
- Date: Wed, 17 Jan 2024 14:44:27 GMT
- Title: Cross-lingual Offensive Language Detection: A Systematic Review of
Datasets, Transfer Approaches and Challenges
- Authors: Aiqi Jiang, Arkaitz Zubiaga
- Abstract summary: This survey presents a systematic and comprehensive exploration of Cross-Lingual Transfer Learning techniques in offensive language detection in social media.
Our study stands as the first holistic overview to focus exclusively on the cross-lingual scenario in this domain.
- Score: 10.079109184645478
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The growing prevalence and rapid evolution of offensive language in social
media amplify the complexities of detection, particularly highlighting the
challenges in identifying such content across diverse languages. This survey
presents a systematic and comprehensive exploration of Cross-Lingual Transfer
Learning (CLTL) techniques in offensive language detection in social media. Our
study stands as the first holistic overview to focus exclusively on the
cross-lingual scenario in this domain. We analyse 67 relevant papers and
categorise these studies across various dimensions, including the
characteristics of multilingual datasets used, the cross-lingual resources
employed, and the specific CLTL strategies implemented. According to "what to
transfer", we also summarise three main CLTL transfer approaches: instance,
feature, and parameter transfer. Additionally, we shed light on the current
challenges and future research opportunities in this field. Furthermore, we
have made our survey resources available online, including two comprehensive
tables that provide accessible references to the multilingual datasets and CLTL
methods used in the reviewed literature.
Related papers
- Cross-Lingual Transfer for Low-Resource Natural Language Processing [0.32634122554914]
Cross-lingual transfer learning is a research area aimed at leveraging data and models from high-resource languages to improve NLP performance.
This thesis presents a new method to improve data-based transfer with T-Projection, a state-of-the-art annotation projection method.
For model-based transfer, we introduce a constrained decoding algorithm that enhances cross-lingual Sequence Labeling in zero-shot settings.
Finally, we develop Medical mT5, the first multilingual text-to-text medical model.
arXiv Detail & Related papers (2025-02-04T21:17:46Z) - USTCCTSU at SemEval-2024 Task 1: Reducing Anisotropy for Cross-lingual Semantic Textual Relatedness Task [17.905282052666333]
Cross-lingual semantic textual relatedness task is an important research task that addresses challenges in cross-lingual communication and text understanding.
It helps establish semantic connections between different languages, crucial for downstream tasks like machine translation, multilingual information retrieval, and cross-lingual text understanding.
With our approach, we achieve a 2nd score in Spanish, a 3rd in Indonesian, and multiple entries in the top ten results in the competition's track C.
arXiv Detail & Related papers (2024-11-28T08:40:14Z) - A Survey on Large Language Models with Multilingualism: Recent Advances and New Frontiers [51.8203871494146]
The rapid development of Large Language Models (LLMs) demonstrates remarkable multilingual capabilities in natural language processing.
Despite the breakthroughs of LLMs, the investigation into the multilingual scenario remains insufficient.
This survey aims to help the research community address multilingual problems and provide a comprehensive understanding of the core concepts, key techniques, and latest developments in multilingual natural language processing based on LLMs.
arXiv Detail & Related papers (2024-05-17T17:47:39Z) - Understanding Cross-Lingual Alignment -- A Survey [52.572071017877704]
Cross-lingual alignment is the meaningful similarity of representations across languages in multilingual language models.
We survey the literature of techniques to improve cross-lingual alignment, providing a taxonomy of methods and summarising insights from throughout the field.
arXiv Detail & Related papers (2024-04-09T11:39:53Z) - X-PARADE: Cross-Lingual Textual Entailment and Information Divergence across Paragraphs [55.80189506270598]
X-PARADE is the first cross-lingual dataset of paragraph-level information divergences.
Annotators label a paragraph in a target language at the span level and evaluate it with respect to a corresponding paragraph in a source language.
Aligned paragraphs are sourced from Wikipedia pages in different languages.
arXiv Detail & Related papers (2023-09-16T04:34:55Z) - Soft Prompt Decoding for Multilingual Dense Retrieval [30.766917713997355]
We show that applying state-of-the-art approaches developed for cross-lingual information retrieval to MLIR tasks leads to sub-optimal performance.
This is due to the heterogeneous and imbalanced nature of multilingual collections.
We present KD-SPD, a novel soft prompt decoding approach for MLIR that implicitly "translates" the representation of documents in different languages into the same embedding space.
arXiv Detail & Related papers (2023-05-15T21:17:17Z) - Understanding Translationese in Cross-Lingual Summarization [106.69566000567598]
Cross-lingual summarization (MS) aims at generating a concise summary in a different target language.
To collect large-scale CLS data, existing datasets typically involve translation in their creation.
In this paper, we first confirm that different approaches of constructing CLS datasets will lead to different degrees of translationese.
arXiv Detail & Related papers (2022-12-14T13:41:49Z) - CONCRETE: Improving Cross-lingual Fact-checking with Cross-lingual
Retrieval [73.48591773882052]
Most fact-checking approaches focus on English only due to the data scarcity issue in other languages.
We present the first fact-checking framework augmented with crosslingual retrieval.
We train the retriever with our proposed Crosslingual Inverse Cloze Task (XICT)
arXiv Detail & Related papers (2022-09-05T17:36:14Z) - Cross-lingual Lifelong Learning [53.06904052325966]
We present a principled Cross-lingual Continual Learning (CCL) evaluation paradigm.
We provide insights into what makes multilingual sequential learning particularly challenging.
The implications of this analysis include a recipe for how to measure and balance different cross-lingual continual learning desiderata.
arXiv Detail & Related papers (2022-05-23T09:25:43Z) - Transfer Learning for Multi-lingual Tasks -- a Survey [11.596820548674266]
Cross languages content and multilingualism in natural language processing (NLP) are hot topics.
We provide a comprehensive overview of the existing literature with a focus on transfer learning techniques in multilingual tasks.
arXiv Detail & Related papers (2021-08-28T20:29:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.