Reservoir computing with logistic map
- URL: http://arxiv.org/abs/2401.09501v2
- Date: Fri, 2 Aug 2024 04:47:37 GMT
- Title: Reservoir computing with logistic map
- Authors: R. Arun, M. Sathish Aravindh, A. Venkatesan, M. Lakshmanan,
- Abstract summary: We demonstrate here a method to predict temporal and nontemporal tasks by constructing virtual nodes as constituting a reservoir in reservoir computing.
We predict three nonlinear systems, namely Lorenz, Rossler, and Hindmarsh-Rose, for temporal tasks and a seventh order for nontemporal tasks with great accuracy.
Remarkably, the logistic map performs well and predicts close to the actual or target values.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent studies on reservoir computing essentially involve a high dimensional dynamical system as the reservoir, which transforms and stores the input as a higher dimensional state, for temporal and nontemporal data processing. We demonstrate here a method to predict temporal and nontemporal tasks by constructing virtual nodes as constituting a reservoir in reservoir computing using a nonlinear map, namely the logistic map, and a simple finite trigonometric series. We predict three nonlinear systems, namely Lorenz, Rossler, and Hindmarsh-Rose, for temporal tasks and a seventh order polynomial for nontemporal tasks with great accuracy. Also, the prediction is made in the presence of noise and found to closely agree with the target. Remarkably, the logistic map performs well and predicts close to the actual or target values. The low values of the root mean square error confirm the accuracy of this method in terms of efficiency. Our approach removes the necessity of continuous dynamical systems for constructing the reservoir in reservoir computing. Moreover, the accurate prediction for the three different nonlinear systems suggests that this method can be considered a general one and can be applied to predict many systems. Finally, we show that the method also accurately anticipates the time series of the all the three variable of Rossler system for the future (self prediction).
Related papers
- OPUS: Occupancy Prediction Using a Sparse Set [64.60854562502523]
We present a framework to simultaneously predict occupied locations and classes using a set of learnable queries.
OPUS incorporates a suite of non-trivial strategies to enhance model performance.
Our lightest model achieves superior RayIoU on the Occ3D-nuScenes dataset at near 2x FPS, while our heaviest model surpasses previous best results by 6.1 RayIoU.
arXiv Detail & Related papers (2024-09-14T07:44:22Z) - Optimization of a Hydrodynamic Computational Reservoir through Evolution [58.720142291102135]
We interface with a model of a hydrodynamic system, under development by a startup, as a computational reservoir.
We optimized the readout times and how inputs are mapped to the wave amplitude or frequency using an evolutionary search algorithm.
Applying evolutionary methods to this reservoir system substantially improved separability on an XNOR task, in comparison to implementations with hand-selected parameters.
arXiv Detail & Related papers (2023-04-20T19:15:02Z) - Reservoir Computing Using Complex Systems [0.0]
Reservoir Computing is a machine learning framework for utilising physical systems for computation.
We show how a single node reservoir can be employed for computation and explore the available options to improve the computational capability of the physical reservoirs.
arXiv Detail & Related papers (2022-12-17T00:25:56Z) - Physics Informed Shallow Machine Learning for Wind Speed Prediction [66.05661813632568]
We analyze a massive dataset of wind measured from anemometers located at 10 m height in 32 locations in Italy.
We train supervised learning algorithms using the past history of wind to predict its value at a future time.
We find that the optimal design as well as its performance vary with the location.
arXiv Detail & Related papers (2022-04-01T14:55:10Z) - Prediction of chaotic attractors in quasiperiodically forced logistic
map using deep learning [0.0]
We forecast two different chaotic dynamics of the quasiperiodically forced logistic map using the well-known deep learning framework Long Short-Term Memory.
The predicted values are evaluated using the metric called Root Mean Square Error and visualized using the scatter plots.
We show that the considered Long Short-Term Memory model performs well in predicting chaotic attractors upto three steps.
arXiv Detail & Related papers (2022-03-18T06:27:16Z) - Task Agnostic Metrics for Reservoir Computing [0.0]
Physical reservoir computing is a computational paradigm that enables temporal pattern recognition in physical matter.
The chosen dynamical system must have three desirable properties: non-linearity, complexity, and fading memory.
We show that, in general, systems with lower damping reach higher values in all three performance metrics.
arXiv Detail & Related papers (2021-08-03T13:58:11Z) - A Graph Convolutional Network with Signal Phasing Information for
Arterial Traffic Prediction [63.470149585093665]
arterial traffic prediction plays a crucial role in the development of modern intelligent transportation systems.
Many existing studies on arterial traffic prediction only consider temporal measurements of flow and occupancy from loop sensors and neglect the rich spatial relationships between upstream and downstream detectors.
We fill this gap by enhancing a deep learning approach, Diffusion Convolutional Recurrent Neural Network, with spatial information generated from signal timing plans at targeted intersections.
arXiv Detail & Related papers (2020-12-25T01:40:29Z) - Spatio-Temporal Graph Scattering Transform [54.52797775999124]
Graph neural networks may be impractical in some real-world scenarios due to a lack of sufficient high-quality training data.
We put forth a novel mathematically designed framework to analyze-temporal data.
arXiv Detail & Related papers (2020-12-06T19:49:55Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z) - Multioutput Gaussian Processes with Functional Data: A Study on Coastal
Flood Hazard Assessment [0.0]
We introduce a surrogate model that accounts for time-varying inputs and provides information on spatially varying inland flooding.
In several experiments, we demonstrate the versatility of the model for both learning maps and inferring unobserved maps.
We conclude that our framework is a promising approach for forecast and early-warning systems.
arXiv Detail & Related papers (2020-07-28T08:15:17Z) - The Unsupervised Method of Vessel Movement Trajectory Prediction [1.2617078020344619]
This article presents an unsupervised method of ship movement trajectory prediction.
It represents the data in a three-dimensional space which consists of time difference between points, the scaled error distance between the tested and its predicted forward and backward locations, and the space-time angle.
Unlike most statistical learning or deep learning methods, the proposed clustering-based trajectory reconstruction method does not require computationally expensive model training.
arXiv Detail & Related papers (2020-07-27T17:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.