Sketch-Guided Constrained Decoding for Boosting Blackbox Large Language Models without Logit Access
- URL: http://arxiv.org/abs/2401.09967v4
- Date: Mon, 22 Jul 2024 01:05:29 GMT
- Title: Sketch-Guided Constrained Decoding for Boosting Blackbox Large Language Models without Logit Access
- Authors: Saibo Geng, Berkay Döner, Chris Wendler, Martin Josifoski, Robert West,
- Abstract summary: We introduce sketch-guided constrained decoding (SGCD), a novel approach to constrained decoding for blackbox large language models (LLMs)
SGCD operates without access to the logits of the blackbox LLM.
We demonstrate the efficacy of SGCD through experiments in closed information extraction and constituency parsing.
- Score: 14.283269607549892
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Constrained decoding, a technique for enforcing constraints on language model outputs, offers a way to control text generation without retraining or architectural modifications. Its application is, however, typically restricted to models that give users access to next-token distributions (usually via softmax logits), which poses a limitation with blackbox large language models (LLMs). This paper introduces sketch-guided constrained decoding (SGCD), a novel approach to constrained decoding for blackbox LLMs, which operates without access to the logits of the blackbox LLM. SGCD utilizes a locally hosted auxiliary model to refine the output of an unconstrained blackbox LLM, effectively treating this initial output as a "sketch" for further elaboration. This approach is complementary to traditional logit-based techniques and enables the application of constrained decoding in settings where full model transparency is unavailable. We demonstrate the efficacy of SGCD through experiments in closed information extraction and constituency parsing, showing how it enhances the utility and flexibility of blackbox LLMs for complex NLP tasks.
Related papers
- LLM-Lasso: A Robust Framework for Domain-Informed Feature Selection and Regularization [59.75242204923353]
We introduce LLM-Lasso, a framework that leverages large language models (LLMs) to guide feature selection in Lasso regression.
LLMs generate penalty factors for each feature, which are converted into weights for the Lasso penalty using a simple, tunable model.
Features identified as more relevant by the LLM receive lower penalties, increasing their likelihood of being retained in the final model.
arXiv Detail & Related papers (2025-02-15T02:55:22Z) - Logits are All We Need to Adapt Closed Models [15.227768874282834]
Many commercial Large Language Models (LLMs) are often closed-source, limiting developers to prompt tuning for aligning content generation with specific applications.
We argue that if such access were available, it would enable more powerful adaptation techniques beyond prompt engineering.
We propose a token-level probability reweighting framework that steers black-box LLMs toward application-specific content generation.
arXiv Detail & Related papers (2025-02-03T22:24:22Z) - SWIFT: On-the-Fly Self-Speculative Decoding for LLM Inference Acceleration [10.970637831760136]
Speculative decoding (SD) has emerged as a widely used paradigm to accelerate the inference of large language models (LLMs)
We introduce SWIFT, an on-the-fly self-speculative decoding algorithm that adaptively selects intermediate layers of LLMs to skip during inference.
We show that SWIFT can achieve over a 1.3x-1.6x speedup while preserving the original distribution of the generated text.
arXiv Detail & Related papers (2024-10-09T14:15:30Z) - Open-domain Implicit Format Control for Large Language Model Generation [52.83173553689678]
We introduce a novel framework for controlled generation in large language models (LLMs)
This study investigates LLMs' capabilities to follow open-domain, one-shot constraints and replicate the format of the example answers.
We also develop a dataset collection methodology for supervised fine-tuning that enhances the open-domain format control of LLMs without degrading output quality.
arXiv Detail & Related papers (2024-08-08T11:51:45Z) - DALD: Improving Logits-based Detector without Logits from Black-box LLMs [56.234109491884126]
Large Language Models (LLMs) have revolutionized text generation, producing outputs that closely mimic human writing.
We present Distribution-Aligned LLMs Detection (DALD), an innovative framework that redefines the state-of-the-art performance in black-box text detection.
DALD is designed to align the surrogate model's distribution with that of unknown target LLMs, ensuring enhanced detection capability and resilience against rapid model iterations.
arXiv Detail & Related papers (2024-06-07T19:38:05Z) - Text-like Encoding of Collaborative Information in Large Language Models for Recommendation [58.87865271693269]
We introduce BinLLM, a novel method to seamlessly integrate collaborative information with Large Language Models for Recommendation (LLMRec)
BinLLM converts collaborative embeddings from external models into binary sequences.
BinLLM provides options to compress the binary sequence using dot-decimal notation to avoid excessively long lengths.
arXiv Detail & Related papers (2024-06-05T12:45:25Z) - FFN-SkipLLM: A Hidden Gem for Autoregressive Decoding with Adaptive Feed Forward Skipping [49.66872823080736]
Autoregressive Large Language Models (e.g., LLaMa, GPTs) are omnipresent achieving remarkable success in language understanding and generation.
To mitigate overload incurred during generation, several early-exit and layer-dropping strategies have been proposed.
We propose FFN-SkipLLM, which is an input-adaptive feed-forward skipping strategy.
arXiv Detail & Related papers (2024-04-05T02:35:43Z) - Guiding LLMs The Right Way: Fast, Non-Invasive Constrained Generation [7.687678490751105]
We present a novel decoding algorithm, DOMINO, that can enforce constraints in a fully subword-aligned fashion, while leveraging pre-computation and speculative decoding to achieve virtually no overhead and in some cases even almost 2$times$ speedup over unconstrained decoding -- thereby outperforming existing approaches by a wide margin.
arXiv Detail & Related papers (2024-02-07T13:36:02Z) - Simultaneous Machine Translation with Large Language Models [51.470478122113356]
We investigate the possibility of applying Large Language Models to SimulMT tasks.
We conducted experiments using the textttLlama2-7b-chat model on nine different languages from the MUST-C dataset.
The results show that LLM outperforms dedicated MT models in terms of BLEU and LAAL metrics.
arXiv Detail & Related papers (2023-09-13T04:06:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.