Few-shot learning for COVID-19 Chest X-Ray Classification with
Imbalanced Data: An Inter vs. Intra Domain Study
- URL: http://arxiv.org/abs/2401.10129v1
- Date: Thu, 18 Jan 2024 16:59:27 GMT
- Title: Few-shot learning for COVID-19 Chest X-Ray Classification with
Imbalanced Data: An Inter vs. Intra Domain Study
- Authors: Alejandro Gal\'an-Cuenca, Antonio Javier Gallego, Marcelo Saval-Calvo,
Antonio Pertusa
- Abstract summary: Medical image datasets are essential for training models used in computer-aided diagnosis, treatment planning, and medical research.
Some challenges are associated with these datasets, including variability in data distribution, data scarcity, and transfer learning issues when using models pre-trained from generic images.
We propose a methodology based on Siamese neural networks in which a series of techniques are integrated to mitigate the effects of data scarcity and distribution imbalance.
- Score: 49.5374512525016
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Medical image datasets are essential for training models used in
computer-aided diagnosis, treatment planning, and medical research. However,
some challenges are associated with these datasets, including variability in
data distribution, data scarcity, and transfer learning issues when using
models pre-trained from generic images. This work studies the effect of these
challenges at the intra- and inter-domain level in few-shot learning scenarios
with severe data imbalance. For this, we propose a methodology based on Siamese
neural networks in which a series of techniques are integrated to mitigate the
effects of data scarcity and distribution imbalance. Specifically, different
initialization and data augmentation methods are analyzed, and four adaptations
to Siamese networks of solutions to deal with imbalanced data are introduced,
including data balancing and weighted loss, both separately and combined, and
with a different balance of pairing ratios. Moreover, we also assess the
inference process considering four classifiers, namely Histogram, $k$NN, SVM,
and Random Forest. Evaluation is performed on three chest X-ray datasets with
annotated cases of both positive and negative COVID-19 diagnoses. The accuracy
of each technique proposed for the Siamese architecture is analyzed separately
and their results are compared to those obtained using equivalent methods on a
state-of-the-art CNN. We conclude that the introduced techniques offer
promising improvements over the baseline in almost all cases, and that the
selection of the technique may vary depending on the amount of data available
and the level of imbalance.
Related papers
- Iterative Online Image Synthesis via Diffusion Model for Imbalanced
Classification [29.730360798234294]
We introduce an Iterative Online Image Synthesis framework to address the class imbalance problem in medical image classification.
Our framework incorporates two key modules, namely Online Image Synthesis (OIS) and Accuracy Adaptive Sampling (AAS)
To evaluate the effectiveness of our proposed method in addressing imbalanced classification, we conduct experiments on the HAM10000 and APTOS datasets.
arXiv Detail & Related papers (2024-03-13T10:51:18Z) - Reducing Intraspecies and Interspecies Covariate Shift in Traumatic
Brain Injury EEG of Humans and Mice Using Transfer Euclidean Alignment [4.264615907591813]
High variability across subjects poses a significant challenge when it comes to deploying machine learning models for classification tasks in the real world.
In such instances, machine learning models that exhibit exceptional performance on a specific dataset may not necessarily demonstrate similar proficiency when applied to a distinct dataset for the same task.
We introduce Transfer Euclidean Alignment - a transfer learning technique to tackle the problem of the robustness of human biomedical data for training deep learning models.
arXiv Detail & Related papers (2023-10-03T19:48:02Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Effective Class-Imbalance learning based on SMOTE and Convolutional
Neural Networks [0.1074267520911262]
Imbalanced Data (ID) is a problem that deters Machine Learning (ML) models for achieving satisfactory results.
In this paper, we investigate the effectiveness of methods based on Deep Neural Networks (DNNs) and Convolutional Neural Networks (CNNs)
In order to achieve reliable results, we conducted our experiments 100 times with randomly shuffled data distributions.
arXiv Detail & Related papers (2022-09-01T07:42:16Z) - Feature robustness and sex differences in medical imaging: a case study
in MRI-based Alzheimer's disease detection [1.7616042687330637]
We compare two classification schemes on the ADNI MRI dataset.
We do not find a strong dependence of model performance for male and female test subjects on the sex composition of the training dataset.
arXiv Detail & Related papers (2022-04-04T17:37:54Z) - Analyzing the Effects of Handling Data Imbalance on Learned Features
from Medical Images by Looking Into the Models [50.537859423741644]
Training a model on an imbalanced dataset can introduce unique challenges to the learning problem.
We look deeper into the internal units of neural networks to observe how handling data imbalance affects the learned features.
arXiv Detail & Related papers (2022-04-04T09:38:38Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
Early and accurate severity assessment of Coronavirus disease 2019 (COVID-19) based on computed tomography (CT) images offers a great help to the estimation of intensive care unit event.
To augment the labeled data and improve the generalization ability of the classification model, it is necessary to aggregate data from multiple sites.
This task faces several challenges including class imbalance between mild and severe infections, domain distribution discrepancy between sites, and presence of heterogeneous features.
arXiv Detail & Related papers (2021-09-08T07:56:51Z) - Deep Mining External Imperfect Data for Chest X-ray Disease Screening [57.40329813850719]
We argue that incorporating an external CXR dataset leads to imperfect training data, which raises the challenges.
We formulate the multi-label disease classification problem as weighted independent binary tasks according to the categories.
Our framework simultaneously models and tackles the domain and label discrepancies, enabling superior knowledge mining ability.
arXiv Detail & Related papers (2020-06-06T06:48:40Z) - Predictive Modeling of ICU Healthcare-Associated Infections from
Imbalanced Data. Using Ensembles and a Clustering-Based Undersampling
Approach [55.41644538483948]
This work is focused on both the identification of risk factors and the prediction of healthcare-associated infections in intensive-care units.
The aim is to support decision making addressed at reducing the incidence rate of infections.
arXiv Detail & Related papers (2020-05-07T16:13:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.