PTPsec: Securing the Precision Time Protocol Against Time Delay Attacks Using Cyclic Path Asymmetry Analysis
- URL: http://arxiv.org/abs/2401.10664v2
- Date: Wed, 7 Feb 2024 09:40:34 GMT
- Title: PTPsec: Securing the Precision Time Protocol Against Time Delay Attacks Using Cyclic Path Asymmetry Analysis
- Authors: Andreas Finkenzeller, Oliver Butowski, Emanuel Regnath, Mohammad Hamad, Sebastian Steinhorst,
- Abstract summary: Precision Time Protocol (PTP) can accomplish high-precision time synchronization in trusted environments.
Time delay attacks pose the highest threat to the protocol, enabling attackers to diverge targeted clocks undetected.
This work proposes an approach to detect and counteract delay attacks against PTP based on cyclic path asymmetry measurements.
- Score: 1.765099515298011
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: High-precision time synchronization is a vital prerequisite for many modern applications and technologies, including Smart Grids, Time-Sensitive Networking (TSN), and 5G networks. Although the Precision Time Protocol (PTP) can accomplish this requirement in trusted environments, it becomes unreliable in the presence of specific cyber attacks. Mainly, time delay attacks pose the highest threat to the protocol, enabling attackers to diverge targeted clocks undetected. With the increasing danger of cyber attacks, especially against critical infrastructure, there is a great demand for effective countermeasures to secure both time synchronization and the applications that depend on it. However, current solutions are not sufficiently capable of mitigating sophisticated delay attacks. For example, they lack proper integration into the PTP protocol, scalability, or sound evaluation with the required microsecond-level accuracy. This work proposes an approach to detect and counteract delay attacks against PTP based on cyclic path asymmetry measurements over redundant paths. For that, we provide a method to find redundant paths in arbitrary networks and show how this redundancy can be exploited to reveal and mitigate undesirable asymmetries on the synchronization path that cause the malicious clock divergence. Furthermore, we propose PTPsec, a secure PTP protocol and its implementation based on the latest IEEE 1588-2019 standard. With PTPsec, we advance the conventional PTP to support reliable delay attack detection and mitigation. We validate our approach on a hardware testbed, which includes an attacker capable of performing static and incremental delay attacks at a microsecond precision. Our experimental results show that all attack scenarios can be reliably detected and mitigated with minimal detection time.
Related papers
- Secure Combination of Untrusted Time information Based on Optimized Dempster-Shafer Theory [24.333157091055327]
Multiple paths scheme is thought as an effective security countermeasure to decrease the influence of Time Delay Attack (TDA)
In this paper, a secure combination algorithm based on Dempster-Shafer theory is proposed for multiple paths method.
Theoretical simulation shows that the proposed algorithm works much better than Fault Tolerant Algorithm (FTA) and the attack detection method based on single path.
arXiv Detail & Related papers (2024-06-19T13:15:12Z) - Making Existing Quantum Position Verification Protocols Secure Against
Arbitrary Transmission Loss [0.889974344676093]
In quantum position verification (QPV) protocols, even relatively small loss rates can compromise security.
We modify the usual structure of QPV protocols and prove that this modification makes the potentially high transmission loss between the verifiers security-irrelevant.
We show possible implementations of the required photon presence detection, making c-$mathrmQPV_mathrmBB84f$ a protocol that solves all major practical issues in QPV.
arXiv Detail & Related papers (2023-12-19T21:38:10Z) - NODLINK: An Online System for Fine-Grained APT Attack Detection and Investigation [15.803901489811318]
NodLink is the first online detection system that maintains high detection accuracy without sacrificing detection granularity.
We propose a novel design of in-memory cache, an efficient attack screening method, and a new approximation algorithm that is more efficient than the conventional one in APT attack detection.
arXiv Detail & Related papers (2023-11-04T05:36:59Z) - Overload: Latency Attacks on Object Detection for Edge Devices [47.9744734181236]
This paper investigates latency attacks on deep learning applications.
Unlike common adversarial attacks for misclassification, the goal of latency attacks is to increase the inference time.
We use object detection to demonstrate how such kind of attacks work.
arXiv Detail & Related papers (2023-04-11T17:24:31Z) - Forecasting Particle Accelerator Interruptions Using Logistic LASSO
Regression [62.997667081978825]
Unforeseen particle accelerator interruptions, also known as interlocks, lead to abrupt operational changes despite being necessary safety measures.
We propose a simple yet powerful binary classification model aiming to forecast such interruptions.
The model is formulated as logistic regression penalized by at least absolute shrinkage and selection operator.
arXiv Detail & Related papers (2023-03-15T23:11:30Z) - Guaranteed Dynamic Scheduling of Ultra-Reliable Low-Latency Traffic via
Conformal Prediction [72.59079526765487]
The dynamic scheduling of ultra-reliable and low-latency traffic (URLLC) in the uplink can significantly enhance the efficiency of coexisting services.
The main challenge is posed by the uncertainty in the process of URLLC packet generation.
We introduce a novel scheduler for URLLC packets that provides formal guarantees on reliability and latency irrespective of the quality of the URLLC traffic predictor.
arXiv Detail & Related papers (2023-02-15T14:09:55Z) - Time synchronization protocol for the KLJN secure key exchange scheme [0.0]
The information theoretically secure Kirchhoff-law-Johnson-noise (KLJN) key exchange scheme is also potentially vulnerable against clock attacks.
We propose and explore various ways of clock synchronization for the KLJN system and propose an ultimate protocol that preserves time and hardware integrity under arbitrary attacks.
arXiv Detail & Related papers (2022-07-04T00:33:07Z) - Secure two-way fiber-optic time transfer against sub-ns asymmetric delay
attack [20.00845773010957]
asymmetric delay attack is a serious threat which cannot be prevent by any encryption method.
Two-way fiber-optic time transfer system with time stability with 24.5ps, 3.98ps, and 2.95ps at 1s, 10s, and 100s averaging time is shown experimentally.
arXiv Detail & Related papers (2022-03-08T01:55:59Z) - Adversarial Attacks and Defense for Non-Parametric Two-Sample Tests [73.32304304788838]
This paper systematically uncovers the failure mode of non-parametric TSTs through adversarial attacks.
To enable TST-agnostic attacks, we propose an ensemble attack framework that jointly minimizes the different types of test criteria.
To robustify TSTs, we propose a max-min optimization that iteratively generates adversarial pairs to train the deep kernels.
arXiv Detail & Related papers (2022-02-07T11:18:04Z) - Better than the Best: Gradient-based Improper Reinforcement Learning for
Network Scheduling [60.48359567964899]
We consider the problem of scheduling in constrained queueing networks with a view to minimizing packet delay.
We use a policy gradient based reinforcement learning algorithm that produces a scheduler that performs better than the available atomic policies.
arXiv Detail & Related papers (2021-05-01T10:18:34Z) - Round-robin differential phase-time-shifting protocol for quantum key
distribution: theory and experiment [58.03659958248968]
Quantum key distribution (QKD) allows the establishment of common cryptographic keys among distant parties.
Recently, a QKD protocol that circumvents the need for monitoring signal disturbance, has been proposed and demonstrated in initial experiments.
We derive the security proofs of the round-robin differential phase-time-shifting protocol in the collective attack scenario.
Our results show that the RRDPTS protocol can achieve higher secret key rate in comparison with the RRDPS, in the condition of high quantum bit error rate.
arXiv Detail & Related papers (2021-03-15T15:20:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.