A Systematic Evaluation of Euclidean Alignment with Deep Learning for EEG Decoding
- URL: http://arxiv.org/abs/2401.10746v4
- Date: Thu, 23 May 2024 00:54:29 GMT
- Title: A Systematic Evaluation of Euclidean Alignment with Deep Learning for EEG Decoding
- Authors: Bruna Junqueira, Bruno Aristimunha, Sylvain Chevallier, Raphael Y. de Camargo,
- Abstract summary: Euclidean Alignment (EA) is gaining popularity due to its ease of use, low computational complexity, and compatibility with Deep Learning models.
EA improves decoding in the target subject by 4.33% and decreases convergence time by more than 70%.
- Score: 1.8962934131747162
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Electroencephalography (EEG) signals are frequently used for various Brain-Computer Interface (BCI) tasks. While Deep Learning (DL) techniques have shown promising results, they are hindered by the substantial data requirements. By leveraging data from multiple subjects, transfer learning enables more effective training of DL models. A technique that is gaining popularity is Euclidean Alignment (EA) due to its ease of use, low computational complexity, and compatibility with Deep Learning models. However, few studies evaluate its impact on the training performance of shared and individual DL models. In this work, we systematically evaluate the effect of EA combined with DL for decoding BCI signals. We used EA to train shared models with data from multiple subjects and evaluated its transferability to new subjects. Our experimental results show that it improves decoding in the target subject by 4.33% and decreases convergence time by more than 70%. We also trained individual models for each subject to use as a majority-voting ensemble classifier. In this scenario, using EA improved the 3-model ensemble accuracy by 3.7%. However, when compared to the shared model with EA, the ensemble accuracy was 3.62% lower.
Related papers
- Stabilizing Subject Transfer in EEG Classification with Divergence
Estimation [17.924276728038304]
We propose several graphical models to describe an EEG classification task.
We identify statistical relationships that should hold true in an idealized training scenario.
We design regularization penalties to enforce these relationships in two stages.
arXiv Detail & Related papers (2023-10-12T23:06:52Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Deep Negative Correlation Classification [82.45045814842595]
Existing deep ensemble methods naively train many different models and then aggregate their predictions.
We propose deep negative correlation classification (DNCC)
DNCC yields a deep classification ensemble where the individual estimator is both accurate and negatively correlated.
arXiv Detail & Related papers (2022-12-14T07:35:20Z) - Guiding Neural Entity Alignment with Compatibility [32.22210683891481]
We argue that different entities within one Knowledge Graph should have compatible counterparts in the other KG.
Making compatible predictions should be one of the goals of training an EA model along with fitting the labelled data.
We devise a training framework by addressing three problems: (1) how to measure the compatibility of an EA model; (2) how to inject the property of being compatible into an EA model; and (3) how to optimise parameters of the compatibility model.
arXiv Detail & Related papers (2022-11-29T00:05:08Z) - Are Sample-Efficient NLP Models More Robust? [90.54786862811183]
We investigate the relationship between sample efficiency (amount of data needed to reach a given ID accuracy) and robustness (how models fare on OOD evaluation)
We find that higher sample efficiency is only correlated with better average OOD robustness on some modeling interventions and tasks, but not others.
These results suggest that general-purpose methods for improving sample efficiency are unlikely to yield universal OOD robustness improvements, since such improvements are highly dataset- and task-dependent.
arXiv Detail & Related papers (2022-10-12T17:54:59Z) - Deep learning for ECoG brain-computer interface: end-to-end vs.
hand-crafted features [4.7773230870500605]
Brain signals are temporal data with a low signal-to-noise ratio, uncertain labels, and nonstationary data in time.
These factors may influence the training process and slow down the models' performance improvement.
This paper compares models that use raw ECoG signal and time-frequency features for BCI motor imagery decoding.
arXiv Detail & Related papers (2022-10-05T20:18:30Z) - Multi-Domain Joint Training for Person Re-Identification [51.73921349603597]
Deep learning-based person Re-IDentification (ReID) often requires a large amount of training data to achieve good performance.
It appears that collecting more training data from diverse environments tends to improve the ReID performance.
We propose an approach called Domain-Camera-Sample Dynamic network (DCSD) whose parameters can be adaptive to various factors.
arXiv Detail & Related papers (2022-01-06T09:20:59Z) - Subject Adaptive EEG-based Visual Recognition [14.466626957417864]
This paper focuses on EEG-based visual recognition, aiming to predict the visual object class observed by a subject based on his/her EEG signals.
One of the main challenges is the large variation between signals from different subjects.
We introduce a novel problem setting, namely subject adaptive EEG-based visual recognition.
arXiv Detail & Related papers (2021-10-26T08:06:55Z) - CorDEL: A Contrastive Deep Learning Approach for Entity Linkage [70.82533554253335]
Entity linkage (EL) is a critical problem in data cleaning and integration.
With the ever-increasing growth of new data, deep learning (DL) based approaches have been proposed to alleviate the high cost of EL associated with the traditional models.
We argue that the twin-network architecture is sub-optimal to EL, leading to inherent drawbacks of existing models.
arXiv Detail & Related papers (2020-09-15T16:33:05Z) - Deep transfer learning for improving single-EEG arousal detection [63.52264764099532]
Two datasets do not contain exactly the same setup leading to degraded performance in single-EEG models.
We train a baseline model and replace the first two layers to prepare the architecture for single-channel electroencephalography data.
Using a fine-tuning strategy, our model yields similar performance to the baseline model and was significantly better than a comparable single-channel model.
arXiv Detail & Related papers (2020-04-10T16:51:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.