Topological pumping induced by spatiotemporal modulation of interaction
- URL: http://arxiv.org/abs/2401.10906v1
- Date: Sun, 7 Jan 2024 16:33:56 GMT
- Title: Topological pumping induced by spatiotemporal modulation of interaction
- Authors: Boning Huang, Yongguan Ke, Wenjie Liu, Chaohong Lee
- Abstract summary: We propose to use modulation of interaction to realize topological pumping without single-particle counterpart.
Because the modulation breaks time-reversal symmetry, the multiparticle energy bands of bound states have none-zero Chern number.
Our work could trigger further studies of correlated topological phenomena that do not have a single-particle counterpart.
- Score: 1.7518340290808412
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Particle-particle interaction provides a new degree of freedom to induce
novel topological phenomena. Here, we propose to use spatiotemporal modulation
of interaction to realize topological pumping without single-particle
counterpart. Because the modulation breaks time-reversal symmetry, the
multiparticle energy bands of bound states have none-zero Chern number, and
support topological bound edge states. In a Thouless pump, a bound state that
uniformly occupies a topological energy band can be shifted by integer unit
cells per cycle, consistent with the corresponding Chern number. We can also
realize topological pumping of bound edge state from one end to another. The
entanglement entropy between particles rapidly increases at transition points,
which is related to the spatial spread of a bounded pair. In addition, we
propose to realize hybridized pumping with fractional displacement per cycle by
adding an extra tilt potential to separate topological pumping of the bound
state and Bloch oscillations of single particle. Our work could trigger further
studies of correlated topological phenomena that do not have a single-particle
counterpart.
Related papers
- Quantized Thouless pumps protected by interactions in dimerized Rydberg tweezer arrays [41.94295877935867]
In the noninteracting case, quantized Thouless pumps can only occur when a topological singularity is encircled adiabatically.
In the presence of interactions, such topological transport can even persist for exotic paths in which the system gets arbitrarily close to the noninteracting singularity.
arXiv Detail & Related papers (2024-02-14T16:58:21Z) - Stabilization of Hubbard-Thouless pumps through nonlocal fermionic
repulsion [0.0]
Thouless pumping represents a powerful concept to probe quantized topological invariants in quantum systems.
We show that sufficiently large intersite interactions allow for an interaction-induced recovery of Thouless pumps.
Our results provide a new mechanism to stabilize Thouless pumps in interacting quantum systems.
arXiv Detail & Related papers (2023-08-25T13:34:42Z) - Interaction-induced topological pumping in a solid-state quantum system [18.7657779101508]
Inter-particle interaction can profoundly alter the band structure of quantum many-body systems.
Here we demonstrate interaction-induced topological pumping in a solid-state quantum system comprising an array of 36 superconducting qubits.
arXiv Detail & Related papers (2023-03-08T13:57:13Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Fermion production at the boundary of an expanding universe: a cold-atom
gravitational analogue [68.8204255655161]
We study the phenomenon of cosmological particle production of Dirac fermions in a Friedman-Robertson-Walker spacetime.
We present a scheme for the quantum simulation of this gravitational analogue by means of ultra-cold atoms in Raman optical lattices.
arXiv Detail & Related papers (2022-12-02T18:28:23Z) - Topologically bound states, non-Hermitian skin effect and flat bands,
induced by two-particle interaction [91.3755431537592]
We study theoretically repelling quantum states of two spinless particles in a one-dimensional tight-binding model.
We demonstrate, that when the particles are not identical, their interaction drives nontrivial correlated two-particle states.
arXiv Detail & Related papers (2022-11-11T07:34:54Z) - Correlated topological pumping of interacting bosons assisted by Bloch
oscillations [4.960482661973871]
We study how particle-particle interactions affect topological transport in a periodically-modulated and tilted optical lattice.
Our study deepens the understanding of correlation effects on topological states, and provides a feasible way for detecting topological properties in interacting systems.
arXiv Detail & Related papers (2022-08-17T04:19:45Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Self-oscillating pump in a topological dissipative atom-cavity system [55.41644538483948]
We report on an emergent mechanism for pumping in a quantum gas coupled to an optical resonator.
Due to dissipation, the cavity field evolves between its two quadratures, each corresponding to a different centrosymmetric crystal configuration.
This self-oscillation results in a time-periodic potential analogous to that describing the transport of electrons in topological tight-binding models.
arXiv Detail & Related papers (2021-12-21T19:57:30Z) - Prethermalization and entanglement dynamics in interacting topological
pumps [0.0]
We investigate the formation of quasisteady states in one-dimensional pumps of interacting fermions at non-integer filling fraction.
Potential disorder reduces the amplitude of fluctuations of the quasisteady state current around its universal value.
The lifetime of the quasisteady state remains nearly unaffected for disorder strengths up to the scale of the single-particle band gap.
arXiv Detail & Related papers (2021-03-29T18:00:01Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.