SleepNet: Attention-Enhanced Robust Sleep Prediction using Dynamic
Social Networks
- URL: http://arxiv.org/abs/2401.11113v2
- Date: Sat, 27 Jan 2024 02:05:41 GMT
- Title: SleepNet: Attention-Enhanced Robust Sleep Prediction using Dynamic
Social Networks
- Authors: Maryam Khalid, Elizabeth B. Klerman, Andrew W. Mchill, Andrew J. K.
Phillips, Akane Sano
- Abstract summary: We propose SleepNet, a system that exploits social contagion in sleep behavior through graph networks.
Our architecture overcomes the limitations of large-scale graphs containing connections irrelevant to sleep behavior by devising an attention mechanism.
- Score: 1.622340939868235
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Sleep behavior significantly impacts health and acts as an indicator of
physical and mental well-being. Monitoring and predicting sleep behavior with
ubiquitous sensors may therefore assist in both sleep management and tracking
of related health conditions. While sleep behavior depends on, and is reflected
in the physiology of a person, it is also impacted by external factors such as
digital media usage, social network contagion, and the surrounding weather. In
this work, we propose SleepNet, a system that exploits social contagion in
sleep behavior through graph networks and integrates it with physiological and
phone data extracted from ubiquitous mobile and wearable devices for predicting
next-day sleep labels about sleep duration. Our architecture overcomes the
limitations of large-scale graphs containing connections irrelevant to sleep
behavior by devising an attention mechanism. The extensive experimental
evaluation highlights the improvement provided by incorporating social networks
in the model. Additionally, we conduct robustness analysis to demonstrate the
system's performance in real-life conditions. The outcomes affirm the stability
of SleepNet against perturbations in input data. Further analyses emphasize the
significance of network topology in prediction performance revealing that users
with higher eigenvalue centrality are more vulnerable to data perturbations.
Related papers
- Sleep Activity Recognition and Characterization from Multi-Source
Passively Sensed Data [67.60224656603823]
Sleep Activity Recognition methods can provide indicators to assess, monitor, and characterize subjects' sleep-wake cycles and detect behavioral changes.
We propose a general method that continuously operates on passively sensed data from smartphones to characterize sleep and identify significant sleep episodes.
Thanks to their ubiquity, these devices constitute an excellent alternative data source to profile subjects' biorhythms in a continuous, objective, and non-invasive manner.
arXiv Detail & Related papers (2023-01-17T15:18:45Z) - ProductGraphSleepNet: Sleep Staging using Product Spatio-Temporal Graph
Learning with Attentive Temporal Aggregation [4.014524824655106]
This work proposes an adaptive product graph learning-based graph convolutional network, named ProductGraphSleepNet, for learning joint-temporal graphs.
The proposed network makes it possible for clinicians to comprehend and interpret the learned connectivity graphs for sleep stages.
arXiv Detail & Related papers (2022-12-09T14:34:58Z) - Heterogeneous Hidden Markov Models for Sleep Activity Recognition from
Multi-Source Passively Sensed Data [67.60224656603823]
Psychiatric patients' passive activity monitoring is crucial to detect behavioural shifts in real-time.
Sleep Activity Recognition constitutes a behavioural marker to portray patients' activity cycles.
Mobile passively sensed data captured from smartphones constitute an excellent alternative to profile patients' biorhythm.
arXiv Detail & Related papers (2022-11-08T17:29:40Z) - SleepMore: Sleep Prediction at Scale via Multi-Device WiFi Sensing [0.0]
We propose SleepMore, an accurate and easy-to-deploy sleep-tracking approach based on machine learning over the user's WiFi network activity.
We validate SleepMore using data from a month-long user study involving 46 college students and draw comparisons with the Oura Ring wearable.
Our results demonstrate that SleepMore produces statistically indistinguishable sleep statistics from the Oura ring baseline for predictions made within a 5% uncertainty rate.
arXiv Detail & Related papers (2022-10-24T16:42:56Z) - Continual learning benefits from multiple sleep mechanisms: NREM, REM,
and Synaptic Downscaling [51.316408685035526]
Learning new tasks and skills in succession without losing prior learning is a computational challenge for both artificial and biological neural networks.
Here, we investigate how modeling three distinct components of mammalian sleep together affects continual learning in artificial neural networks.
arXiv Detail & Related papers (2022-09-09T13:45:27Z) - Personalised recommendations of sleep behaviour with neural networks
using sleep diaries captured in Sleepio [11.243440695021567]
In collaboration with Big Health, we have analysed data from a random sample of 401,174 sleep diaries.
We have built a neural network to model sleep behaviour and sleep quality of each individual in a personalised manner.
We show that the neural network can be used to produce personalised recommendations of what sleep habits users should follow to maximise sleep quality.
arXiv Detail & Related papers (2022-07-29T18:29:05Z) - Exploiting Social Graph Networks for Emotion Prediction [2.7376140293132667]
We utilize mobile sensing data to predict happiness and stress.
In addition to a person's physiological features, we also incorporate the environment's impact through weather and social network.
We propose an architecture that automates the integration of a user's social network affect prediction.
arXiv Detail & Related papers (2022-07-12T20:24:39Z) - Searching for the Essence of Adversarial Perturbations [73.96215665913797]
We show that adversarial perturbations contain human-recognizable information, which is the key conspirator responsible for a neural network's erroneous prediction.
This concept of human-recognizable information allows us to explain key features related to adversarial perturbations.
arXiv Detail & Related papers (2022-05-30T18:04:57Z) - The world seems different in a social context: a neural network analysis
of human experimental data [57.729312306803955]
We show that it is possible to replicate human behavioral data in both individual and social task settings by modifying the precision of prior and sensory signals.
An analysis of the neural activation traces of the trained networks provides evidence that information is coded in fundamentally different ways in the network in the individual and in the social conditions.
arXiv Detail & Related papers (2022-03-03T17:19:12Z) - Non-Singular Adversarial Robustness of Neural Networks [58.731070632586594]
Adrial robustness has become an emerging challenge for neural network owing to its over-sensitivity to small input perturbations.
We formalize the notion of non-singular adversarial robustness for neural networks through the lens of joint perturbations to data inputs as well as model weights.
arXiv Detail & Related papers (2021-02-23T20:59:30Z) - WiSleep: Scalable Sleep Monitoring and Analytics Using Passive WiFi
Sensing [0.0]
WiSleep is a sleep monitoring and analytics platform using smartphone network connections that are passively sensed from WiFi infrastructure.
We propose an unsupervised ensemble model of Bayesian change point detection to predict sleep and wake-up times.
We show that WiSleep can process data from 20,000 users on a single commodity server, allowing it to scale to large campus populations with low server requirements.
arXiv Detail & Related papers (2021-02-07T00:05:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.