Meta Reinforcement Learning for Strategic IoT Deployments Coverage in
Disaster-Response UAV Swarms
- URL: http://arxiv.org/abs/2401.11118v1
- Date: Sat, 20 Jan 2024 05:05:39 GMT
- Title: Meta Reinforcement Learning for Strategic IoT Deployments Coverage in
Disaster-Response UAV Swarms
- Authors: Marwan Dhuheir, Aiman Erbad, Ala Al-Fuqaha
- Abstract summary: Unmanned Aerial Vehicles (UAVs) have grabbed the attention of researchers in academia and industry for their potential use in critical emergency applications.
These applications include providing wireless services to ground users and collecting data from areas affected by disasters.
UAVs' limited resources, energy budget, and strict mission completion time have posed challenges in adopting UAVs for these applications.
- Score: 5.57865728456594
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: In the past decade, Unmanned Aerial Vehicles (UAVs) have grabbed the
attention of researchers in academia and industry for their potential use in
critical emergency applications, such as providing wireless services to ground
users and collecting data from areas affected by disasters, due to their
advantages in terms of maneuverability and movement flexibility. The UAVs'
limited resources, energy budget, and strict mission completion time have posed
challenges in adopting UAVs for these applications. Our system model considers
a UAV swarm that navigates an area collecting data from ground IoT devices
focusing on providing better service for strategic locations and allowing UAVs
to join and leave the swarm (e.g., for recharging) in a dynamic way. In this
work, we introduce an optimization model with the aim of minimizing the total
energy consumption and provide the optimal path planning of UAVs under the
constraints of minimum completion time and transmit power. The formulated
optimization is NP-hard making it not applicable for real-time decision making.
Therefore, we introduce a light-weight meta-reinforcement learning solution
that can also cope with sudden changes in the environment through fast
convergence. We conduct extensive simulations and compare our approach to three
state-of-the-art learning models. Our simulation results prove that our
introduced approach is better than the three state-of-the-art algorithms in
providing coverage to strategic locations with fast convergence.
Related papers
- Multi-UAV Multi-RIS QoS-Aware Aerial Communication Systems using DRL and PSO [34.951735976771765]
Unmanned Aerial Vehicles (UAVs) have attracted the attention of researchers in academia and industry for providing wireless services to ground users.
limited resources of UAVs can pose challenges for adopting UAVs for such applications.
Our system model considers a UAV swarm that navigates an area, providing wireless communication to ground users with RIS support to improve the coverage of the UAVs.
arXiv Detail & Related papers (2024-06-16T17:53:56Z) - UAV-enabled Collaborative Beamforming via Multi-Agent Deep Reinforcement Learning [79.16150966434299]
We formulate a UAV-enabled collaborative beamforming multi-objective optimization problem (UCBMOP) to maximize the transmission rate of the UVAA and minimize the energy consumption of all UAVs.
We use the heterogeneous-agent trust region policy optimization (HATRPO) as the basic framework, and then propose an improved HATRPO algorithm, namely HATRPO-UCB.
arXiv Detail & Related papers (2024-04-11T03:19:22Z) - UAV Swarm-enabled Collaborative Secure Relay Communications with
Time-domain Colluding Eavesdropper [115.56455278813756]
Unmanned aerial vehicles (UAV) as aerial relays are practically appealing for assisting Internet Things (IoT) network.
In this work, we aim to utilize the UAV to assist secure communication between the UAV base station and terminal terminal devices.
arXiv Detail & Related papers (2023-10-03T11:47:01Z) - Multi-Objective Optimization for UAV Swarm-Assisted IoT with Virtual
Antenna Arrays [55.736718475856726]
Unmanned aerial vehicle (UAV) network is a promising technology for assisting Internet-of-Things (IoT)
Existing UAV-assisted data harvesting and dissemination schemes require UAVs to frequently fly between the IoTs and access points.
We introduce collaborative beamforming into IoTs and UAVs simultaneously to achieve energy and time-efficient data harvesting and dissemination.
arXiv Detail & Related papers (2023-08-03T02:49:50Z) - Muti-Agent Proximal Policy Optimization For Data Freshness in
UAV-assisted Networks [4.042622147977782]
We focus on the case where the collected data is time-sensitive, and it is critical to maintain its timeliness.
Our objective is to optimally design the UAVs' trajectories and the subsets of visited IoT devices such as the global Age-of-Updates (AoU) is minimized.
arXiv Detail & Related papers (2023-03-15T15:03:09Z) - Trajectory Design for UAV-Based Internet-of-Things Data Collection: A
Deep Reinforcement Learning Approach [93.67588414950656]
In this paper, we investigate an unmanned aerial vehicle (UAV)-assisted Internet-of-Things (IoT) system in a 3D environment.
We present a TD3-based trajectory design for completion time minimization (TD3-TDCTM) algorithm.
Our simulation results show the superiority of the proposed TD3-TDCTM algorithm over three conventional non-learning based baseline methods.
arXiv Detail & Related papers (2021-07-23T03:33:29Z) - 3D UAV Trajectory and Data Collection Optimisation via Deep
Reinforcement Learning [75.78929539923749]
Unmanned aerial vehicles (UAVs) are now beginning to be deployed for enhancing the network performance and coverage in wireless communication.
It is challenging to obtain an optimal resource allocation scheme for the UAV-assisted Internet of Things (IoT)
In this paper, we design a new UAV-assisted IoT systems relying on the shortest flight path of the UAVs while maximising the amount of data collected from IoT devices.
arXiv Detail & Related papers (2021-06-06T14:08:41Z) - Data Freshness and Energy-Efficient UAV Navigation Optimization: A Deep
Reinforcement Learning Approach [88.45509934702913]
We design a navigation policy for multiple unmanned aerial vehicles (UAVs) where mobile base stations (BSs) are deployed.
We incorporate different contextual information such as energy and age of information (AoI) constraints to ensure the data freshness at the ground BS.
By applying the proposed trained model, an effective real-time trajectory policy for the UAV-BSs captures the observable network states over time.
arXiv Detail & Related papers (2020-02-21T07:29:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.