Inducing High Energy-Latency of Large Vision-Language Models with Verbose Images
- URL: http://arxiv.org/abs/2401.11170v2
- Date: Fri, 22 Mar 2024 15:31:39 GMT
- Title: Inducing High Energy-Latency of Large Vision-Language Models with Verbose Images
- Authors: Kuofeng Gao, Yang Bai, Jindong Gu, Shu-Tao Xia, Philip Torr, Zhifeng Li, Wei Liu,
- Abstract summary: Large vision-language models (VLMs) have achieved exceptional performance across various multi-modal tasks.
In this paper, we aim to induce high energy-latency cost during inference ofVLMs.
We propose verbose images, with the goal of crafting an imperceptible perturbation to induce VLMs to generate long sentences.
- Score: 63.91986621008751
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large vision-language models (VLMs) such as GPT-4 have achieved exceptional performance across various multi-modal tasks. However, the deployment of VLMs necessitates substantial energy consumption and computational resources. Once attackers maliciously induce high energy consumption and latency time (energy-latency cost) during inference of VLMs, it will exhaust computational resources. In this paper, we explore this attack surface about availability of VLMs and aim to induce high energy-latency cost during inference of VLMs. We find that high energy-latency cost during inference of VLMs can be manipulated by maximizing the length of generated sequences. To this end, we propose verbose images, with the goal of crafting an imperceptible perturbation to induce VLMs to generate long sentences during inference. Concretely, we design three loss objectives. First, a loss is proposed to delay the occurrence of end-of-sequence (EOS) token, where EOS token is a signal for VLMs to stop generating further tokens. Moreover, an uncertainty loss and a token diversity loss are proposed to increase the uncertainty over each generated token and the diversity among all tokens of the whole generated sequence, respectively, which can break output dependency at token-level and sequence-level. Furthermore, a temporal weight adjustment algorithm is proposed, which can effectively balance these losses. Extensive experiments demonstrate that our verbose images can increase the length of generated sequences by 7.87 times and 8.56 times compared to original images on MS-COCO and ImageNet datasets, which presents potential challenges for various applications. Our code is available at https://github.com/KuofengGao/Verbose_Images.
Related papers
- A Stitch in Time Saves Nine: Small VLM is a Precise Guidance for Accelerating Large VLMs [65.00970402080351]
A promising approach to accelerating large vision-language models (VLMs) is using partial information, such as attention maps from specific layers, to assess token importance and prune less essential tokens.
Our study reveals three key insights: (i) Partial attention information is insufficient for accurately identifying critical visual tokens, resulting in suboptimal performance, especially at low token retention ratios; (ii) Global attention information, such as the attention map aggregated across all layers, more effectively preserves essential tokens and maintains comparable performance under aggressive pruning; and (iii) The global attention map aggregated from a small VLM closely resembles that of a large VLM,
arXiv Detail & Related papers (2024-12-04T13:56:44Z) - Efficient Multi-modal Large Language Models via Visual Token Grouping [55.482198808206284]
High-resolution images and videos pose a barrier to their broader adoption.
compressing vision tokens in MLLMs has emerged as a promising approach to reduce inference costs.
We introduce VisToG, a novel grouping mechanism that leverages the capabilities of pre-trained vision encoders to group similar image segments.
arXiv Detail & Related papers (2024-11-26T09:36:02Z) - FoPru: Focal Pruning for Efficient Large Vision-Language Models [11.36025001578531]
We propose Focal Pruning (FoPru), a training-free method that prunes visual tokens based on the attention-based token significance derived from the vision encoder.
Our method can prune a large number of redundant tokens while maintaining high accuracy, leading to significant improvements in inference efficiency.
arXiv Detail & Related papers (2024-11-21T14:22:38Z) - Inference Optimal VLMs Need Only One Visual Token but Larger Models [54.01228554126122]
Vision Language Models (VLMs) have demonstrated strong capabilities across various visual understanding and reasoning tasks.
VLMs are often constrained by high latency during inference due to substantial compute required to process the large number of input tokens.
We take some initial steps towards building approaches tailored for high token compression settings.
arXiv Detail & Related papers (2024-11-05T18:54:21Z) - Video Token Sparsification for Efficient Multimodal LLMs in Autonomous Driving [9.900979396513687]
Multimodal large language models (MLLMs) have demonstrated remarkable potential for enhancing scene understanding in autonomous driving systems.
One major limitation arises from the large number of visual tokens required to capture fine-grained and long-context visual information.
We propose Video Token Sparsification (VTS) to significantly reduce the total number of visual tokens while preserving the most salient information.
arXiv Detail & Related papers (2024-09-16T05:31:01Z) - VideoLLM-MoD: Efficient Video-Language Streaming with Mixture-of-Depths Vision Computation [66.00245701441547]
We introduce a novel approach to reduce vision compute by leveraging redundant vision tokens "skipping layers" rather than decreasing the number of vision tokens.
Our method, VideoLLM-MoD, is inspired by mixture-of-depths LLMs and addresses the challenge of numerous vision tokens in long-term or streaming video.
arXiv Detail & Related papers (2024-08-29T17:21:58Z) - Energy-Latency Manipulation of Multi-modal Large Language Models via Verbose Samples [63.9198662100875]
In this paper, we aim to induce high energy-latency cost during inference by crafting an imperceptible perturbation.
We find that high energy-latency cost can be manipulated by maximizing the length of generated sequences.
Experiments demonstrate that our verbose samples can largely extend the length of generated sequences.
arXiv Detail & Related papers (2024-04-25T12:11:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.