Language Models as Hierarchy Encoders
- URL: http://arxiv.org/abs/2401.11374v3
- Date: Wed, 09 Oct 2024 20:51:58 GMT
- Title: Language Models as Hierarchy Encoders
- Authors: Yuan He, Zhangdie Yuan, Jiaoyan Chen, Ian Horrocks,
- Abstract summary: We introduce a novel approach to re-train transformer encoder-based LMs as Hierarchy Transformer encoders (HiTs)
Our method situates the output embedding space of pre-trained LMs within a Poincar'e ball with a curvature that adapts to the embedding dimension.
We evaluate HiTs against pre-trained LMs, standard fine-tuned LMs, and several hyperbolic embedding baselines.
- Score: 22.03504018330068
- License:
- Abstract: Interpreting hierarchical structures latent in language is a key limitation of current language models (LMs). While previous research has implicitly leveraged these hierarchies to enhance LMs, approaches for their explicit encoding are yet to be explored. To address this, we introduce a novel approach to re-train transformer encoder-based LMs as Hierarchy Transformer encoders (HiTs), harnessing the expansive nature of hyperbolic space. Our method situates the output embedding space of pre-trained LMs within a Poincar\'e ball with a curvature that adapts to the embedding dimension, followed by training on hyperbolic clustering and centripetal losses. These losses are designed to effectively cluster related entities (input as texts) and organise them hierarchically. We evaluate HiTs against pre-trained LMs, standard fine-tuned LMs, and several hyperbolic embedding baselines, focusing on their capabilities in simulating transitive inference, predicting subsumptions, and transferring knowledge across hierarchies. The results demonstrate that HiTs consistently outperform all baselines in these tasks, underscoring the effectiveness and transferability of our re-trained hierarchy encoders.
Related papers
- Language Models are Graph Learners [70.14063765424012]
Language Models (LMs) are challenging the dominance of domain-specific models, including Graph Neural Networks (GNNs) and Graph Transformers (GTs)
We propose a novel approach that empowers off-the-shelf LMs to achieve performance comparable to state-of-the-art GNNs on node classification tasks.
arXiv Detail & Related papers (2024-10-03T08:27:54Z) - Language Models as Zero-shot Lossless Gradient Compressors: Towards
General Neural Parameter Prior Models [66.1595537904019]
Large language models (LLMs) can act as gradient priors in a zero-shot setting.
We introduce LM-GC, a novel method that integrates LLMs with arithmetic coding.
arXiv Detail & Related papers (2024-09-26T13:38:33Z) - Reconsidering Degeneration of Token Embeddings with Definitions for Encoder-based Pre-trained Language Models [20.107727903240065]
We propose DefinitionEMB to re-construct isotropically distributed and semantics-related token embeddings for encoder-based language models.
Our experiments demonstrate the effectiveness of leveraging definitions from Wiktionary to re-construct such embeddings.
arXiv Detail & Related papers (2024-08-02T15:00:05Z) - Building on Efficient Foundations: Effectively Training LLMs with Structured Feedforward Layers [16.253898272659242]
State-of-the-art results in large language models (LLMs) often rely on scale, which becomes computationally expensive.
Our study focuses on transformer-based LLMs, specifically targeting the computationally intensive feedforward networks (FFNs)
We show that wide and structured networks can utilize training FLOPs more efficiently, with fewer parameters and lower loss than dense models at their optimal trade-off.
arXiv Detail & Related papers (2024-06-24T08:43:21Z) - Generation-driven Contrastive Self-training for Zero-shot Text Classification with Instruction-following LLM [31.25193238045053]
We introduce a novel method, namely GenCo, which leverages the strong generative power of large language models to assist in training a smaller language model.
In our method, an LLM plays an important role in the self-training loop of a smaller model in two important ways.
It helps crafting additional high-quality training pairs, by rewriting input texts conditioned on predicted labels.
arXiv Detail & Related papers (2023-04-24T07:35:38Z) - Guiding the PLMs with Semantic Anchors as Intermediate Supervision:
Towards Interpretable Semantic Parsing [57.11806632758607]
We propose to incorporate the current pretrained language models with a hierarchical decoder network.
By taking the first-principle structures as the semantic anchors, we propose two novel intermediate supervision tasks.
We conduct intensive experiments on several semantic parsing benchmarks and demonstrate that our approach can consistently outperform the baselines.
arXiv Detail & Related papers (2022-10-04T07:27:29Z) - Better Language Model with Hypernym Class Prediction [101.8517004687825]
Class-based language models (LMs) have been long devised to address context sparsity in $n$-gram LMs.
In this study, we revisit this approach in the context of neural LMs.
arXiv Detail & Related papers (2022-03-21T01:16:44Z) - Direction is what you need: Improving Word Embedding Compression in
Large Language Models [7.736463504706344]
This paper presents a novel loss objective to compress token embeddings in Transformer-based models by leveraging an AutoEncoder architecture.
Our method significantly outperforms the commonly used SVD-based matrix-factorization approach in terms of initial language model Perplexity.
arXiv Detail & Related papers (2021-06-15T14:28:00Z) - SML: a new Semantic Embedding Alignment Transformer for efficient
cross-lingual Natural Language Inference [71.57324258813674]
The ability of Transformers to perform with precision a variety of tasks such as question answering, Natural Language Inference (NLI) or summarising, have enable them to be ranked as one of the best paradigms to address this kind of tasks at present.
NLI is one of the best scenarios to test these architectures, due to the knowledge required to understand complex sentences and established a relation between a hypothesis and a premise.
In this paper, we propose a new architecture, siamese multilingual transformer, to efficiently align multilingual embeddings for Natural Language Inference.
arXiv Detail & Related papers (2021-03-17T13:23:53Z) - Tree-structured Attention with Hierarchical Accumulation [103.47584968330325]
"Hierarchical Accumulation" encodes parse tree structures into self-attention at constant time complexity.
Our approach outperforms SOTA methods in four IWSLT translation tasks and the WMT'14 English-German translation task.
arXiv Detail & Related papers (2020-02-19T08:17:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.