Elliptic Curves in Continuous-Variable Quantum Systems
- URL: http://arxiv.org/abs/2401.11579v2
- Date: Tue, 23 Jan 2024 05:23:01 GMT
- Title: Elliptic Curves in Continuous-Variable Quantum Systems
- Authors: Maxwell Aifer and Evan Sheldon
- Abstract summary: We give an algorithm for computing elliptic curve group addition using a single continuous-variable mode.
This result could lead to improvements in the efficiency of elliptic curve discrete logarithms using a quantum device.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Elliptic curves are planar curves which can be used to define an abelian
group. The efficient computation of discrete logarithms over this group is a
longstanding problem relevant to cryptography. It may be possible to
efficiently compute these logarithms using a quantum computer, assuming that
the group addition operation can be computed efficiently on a quantum device.
Currently, however, thousands of logical qubits are required for elliptic curve
group addition, putting this application out of reach for near-term quantum
hardware. Here we give an algorithm for computing elliptic curve group addition
using a single continuous-variable mode, based on weak measurements of a system
with a cubic potential energy. This result could lead to improvements in the
efficiency of elliptic curve discrete logarithms using a quantum device.
Related papers
- Explicit near-optimal quantum algorithm for solving the advection-diffusion equation [0.0]
An explicit quantum algorithm is proposed for modeling dissipative initial-value problems.
We propose a quantum circuit based on a simple coordinate transformation that turns the dependence on the summation index into a trigonometric function.
The proposed algorithm can be used for modeling a wide class of nonunitary initial-value problems.
arXiv Detail & Related papers (2025-01-19T19:03:29Z) - Quantum Algorithms for Stochastic Differential Equations: A Schrödingerisation Approach [29.662683446339194]
We propose quantum algorithms for linear differential equations.
The gate complexity of our algorithms exhibits an $mathcalO(dlog(Nd))$ dependence on the dimensions.
The algorithms are numerically verified for the Ornstein-Uhlenbeck processes, Brownian motions, and one-dimensional L'evy flights.
arXiv Detail & Related papers (2024-12-19T14:04:11Z) - Efficient Quantum Circuits for Non-Unitary and Unitary Diagonal Operators with Space-Time-Accuracy trade-offs [1.0749601922718608]
Unitary and non-unitary diagonal operators are fundamental building blocks in quantum algorithms.
We introduce a general approach to implement unitary and non-unitary diagonal operators with efficient-adjustable-depth quantum circuits.
arXiv Detail & Related papers (2024-04-03T15:42:25Z) - Efficient Representation of Gaussian Fermionic Pure States in Non-Computational Bases [0.0]
This paper introduces an innovative approach for representing Gaussian fermionic states, pivotal in quantum spin systems and fermionic models.
We focus on transitioning these states from the conventional computational (sigmaz) basis to more complex bases, such as (phi, fracpi2, alpha)
We present a novel algorithm that not only simplifies the basis transformation but also reduces computational complexity.
arXiv Detail & Related papers (2024-03-05T19:43:33Z) - A noise-limiting quantum algorithm using mid-circuit measurements for
dynamical correlations at infinite temperature [0.0]
We introduce a quantum channel built out of mid-circuit measurements and feed-forward.
In the presence of a depolarizing channel it still displays a meaningful, non-zero signal in the large depth limit.
We showcase the noise resilience of this quantum channel on Quantinuum's H1-1 ion-trap quantum computer.
arXiv Detail & Related papers (2024-01-04T11:25:04Z) - Determining the ability for universal quantum computing: Testing
controllability via dimensional expressivity [39.58317527488534]
Controllability tests can be used in the design of quantum devices to reduce the number of external controls.
We devise a hybrid quantum-classical algorithm based on a parametrized quantum circuit.
arXiv Detail & Related papers (2023-08-01T15:33:41Z) - GRAPE optimization for open quantum systems with time-dependent
decoherence rates driven by coherent and incoherent controls [77.34726150561087]
The GRadient Ascent Pulse Engineering (GRAPE) method is widely used for optimization in quantum control.
We adopt GRAPE method for optimizing objective functionals for open quantum systems driven by both coherent and incoherent controls.
The efficiency of the algorithm is demonstrated through numerical simulations for the state-to-state transition problem.
arXiv Detail & Related papers (2023-07-17T13:37:18Z) - Noisy Tensor Ring approximation for computing gradients of Variational
Quantum Eigensolver for Combinatorial Optimization [33.12181620473604]
Variational Quantum algorithms have established their potential to provide computational advantage in the realm of optimization.
These algorithms suffer from classically intractable gradients limiting the scalability.
This work proposes a classical gradient method which utilizes the parameter shift rule but computes the expected values from the circuits using a tensor ring approximation.
arXiv Detail & Related papers (2023-07-08T03:14:28Z) - Simulating Markovian open quantum systems using higher-order series
expansion [1.713291434132985]
We present an efficient quantum algorithm for simulating the dynamics of Markovian open quantum systems.
Our algorithm is conceptually cleaner, and it only uses simple quantum primitives without compressed encoding.
arXiv Detail & Related papers (2022-12-05T06:02:50Z) - Compilation of algorithm-specific graph states for quantum circuits [55.90903601048249]
We present a quantum circuit compiler that prepares an algorithm-specific graph state from quantum circuits described in high level languages.
The computation can then be implemented using a series of non-Pauli measurements on this graph state.
arXiv Detail & Related papers (2022-09-15T14:52:31Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in chip size and error rates.
We derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions.
The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $mathcalO(103)$ spins.
arXiv Detail & Related papers (2021-08-06T19:38:03Z) - Synthesis of Quantum Circuits with an Island Genetic Algorithm [44.99833362998488]
Given a unitary matrix that performs certain operation, obtaining the equivalent quantum circuit is a non-trivial task.
Three problems are explored: the coin for the quantum walker, the Toffoli gate and the Fredkin gate.
The algorithm proposed proved to be efficient in decomposition of quantum circuits, and as a generic approach, it is limited only by the available computational power.
arXiv Detail & Related papers (2021-06-06T13:15:25Z) - Quantum Spectral Clustering [5.414308305392762]
Spectral clustering is a powerful machine learning algorithm for clustering data with non convex or nested structures.
We propose an end-to-end quantum algorithm spectral clustering, extending a number of works in quantum machine learning.
arXiv Detail & Related papers (2020-07-01T07:11:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.