Mastering Text-to-Image Diffusion: Recaptioning, Planning, and Generating with Multimodal LLMs
- URL: http://arxiv.org/abs/2401.11708v3
- Date: Sun, 5 May 2024 04:50:54 GMT
- Title: Mastering Text-to-Image Diffusion: Recaptioning, Planning, and Generating with Multimodal LLMs
- Authors: Ling Yang, Zhaochen Yu, Chenlin Meng, Minkai Xu, Stefano Ermon, Bin Cui,
- Abstract summary: We propose a new training-free text-to-image generation/editing framework, namely Recaption, Plan and Generate (RPG)
RPG harnesses the powerful chain-of-thought reasoning ability of multimodal LLMs to enhance the compositionality of text-to-image diffusion models.
Our framework exhibits wide compatibility with various MLLM architectures.
- Score: 77.86214400258473
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models have exhibit exceptional performance in text-to-image generation and editing. However, existing methods often face challenges when handling complex text prompts that involve multiple objects with multiple attributes and relationships. In this paper, we propose a brand new training-free text-to-image generation/editing framework, namely Recaption, Plan and Generate (RPG), harnessing the powerful chain-of-thought reasoning ability of multimodal LLMs to enhance the compositionality of text-to-image diffusion models. Our approach employs the MLLM as a global planner to decompose the process of generating complex images into multiple simpler generation tasks within subregions. We propose complementary regional diffusion to enable region-wise compositional generation. Furthermore, we integrate text-guided image generation and editing within the proposed RPG in a closed-loop fashion, thereby enhancing generalization ability. Extensive experiments demonstrate our RPG outperforms state-of-the-art text-to-image diffusion models, including DALL-E 3 and SDXL, particularly in multi-category object composition and text-image semantic alignment. Notably, our RPG framework exhibits wide compatibility with various MLLM architectures (e.g., MiniGPT-4) and diffusion backbones (e.g., ControlNet). Our code is available at: https://github.com/YangLing0818/RPG-DiffusionMaster
Related papers
- Scene Graph Disentanglement and Composition for Generalizable Complex Image Generation [44.457347230146404]
We leverage the scene graph, a powerful structured representation, for complex image generation.
We employ the generative capabilities of variational autoencoders and diffusion models in a generalizable manner.
Our method outperforms recent competitors based on text, layout, or scene graph.
arXiv Detail & Related papers (2024-10-01T07:02:46Z) - MM2Latent: Text-to-facial image generation and editing in GANs with multimodal assistance [32.70801495328193]
We propose a practical framework - MM2Latent - for multimodal image generation and editing.
We use StyleGAN2 as our image generator, FaRL for text encoding, and train an autoencoders for spatial modalities like mask, sketch and 3DMM.
Our method exhibits superior performance in multimodal image generation, surpassing recent GAN- and diffusion-based methods.
arXiv Detail & Related papers (2024-09-17T09:21:07Z) - LLM4GEN: Leveraging Semantic Representation of LLMs for Text-to-Image Generation [30.897935761304034]
We propose a novel framework called textbfLLM4GEN, which enhances the semantic understanding of text-to-image diffusion models.
A specially designed Cross-Adapter Module (CAM) integrates the original text features of text-to-image models with LLM features.
DensePrompts, which contains $7,000$ dense prompts, provides a comprehensive evaluation for the text-to-image generation task.
arXiv Detail & Related papers (2024-06-30T15:50:32Z) - AnyTrans: Translate AnyText in the Image with Large Scale Models [88.5887934499388]
This paper introduces AnyTrans, an all-encompassing framework for the task-Translate AnyText in the Image (TATI)
Our framework incorporates contextual cues from both textual and visual elements during translation.
We have meticulously compiled a test dataset called MTIT6, which consists of multilingual text image translation data from six language pairs.
arXiv Detail & Related papers (2024-06-17T11:37:48Z) - Multi-modal Instruction Tuned LLMs with Fine-grained Visual Perception [63.03288425612792]
We propose bfAnyRef, a general MLLM model that can generate pixel-wise object perceptions and natural language descriptions from multi-modality references.
Our model achieves state-of-the-art results across multiple benchmarks, including diverse modality referring segmentation and region-level referring expression generation.
arXiv Detail & Related papers (2024-03-05T13:45:46Z) - UNIMO-G: Unified Image Generation through Multimodal Conditional Diffusion [36.06457895469353]
UNIMO-G is a conditional diffusion framework that operates on multimodal prompts with interleaved textual and visual inputs.
It excels in both text-to-image generation and zero-shot subject-driven synthesis.
arXiv Detail & Related papers (2024-01-24T11:36:44Z) - LLMGA: Multimodal Large Language Model based Generation Assistant [53.150283805515926]
We introduce a Multimodal Large Language Model-based Generation Assistant (LLMGA) to assist users in image generation and editing.
We train the MLLM to grasp the properties of image generation and editing, enabling it to generate detailed prompts.
Extensive results show that LLMGA has promising generation and editing capabilities and can enable more flexible and expansive applications.
arXiv Detail & Related papers (2023-11-27T13:37:26Z) - Generating Images with Multimodal Language Models [78.6660334861137]
We propose a method to fuse frozen text-only large language models with pre-trained image encoder and decoder models.
Our model demonstrates a wide suite of multimodal capabilities: image retrieval, novel image generation, and multimodal dialogue.
arXiv Detail & Related papers (2023-05-26T19:22:03Z) - LLM-grounded Diffusion: Enhancing Prompt Understanding of Text-to-Image
Diffusion Models with Large Language Models [62.75006608940132]
This work proposes to enhance prompt understanding capabilities in text-to-image diffusion models.
Our method leverages a pretrained large language model for grounded generation in a novel two-stage process.
Our method significantly outperforms the base diffusion model and several strong baselines in accurately generating images.
arXiv Detail & Related papers (2023-05-23T03:59:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.