Semantic Prompt Learning for Weakly-Supervised Semantic Segmentation
- URL: http://arxiv.org/abs/2401.11791v4
- Date: Sun, 12 Jan 2025 15:17:36 GMT
- Title: Semantic Prompt Learning for Weakly-Supervised Semantic Segmentation
- Authors: Ci-Siang Lin, Chien-Yi Wang, Yu-Chiang Frank Wang, Min-Hung Chen,
- Abstract summary: Weakly-Supervised Semantic (WSSS) aims to train segmentation models using image data with only image-level supervision.
We propose a Semantic Prompt Learning for WSSS (SemPLeS) framework, which learns to effectively prompt the CLIP latent space.
SemPLeS can perform better semantic alignment between object regions and class labels, resulting in desired pseudo masks for training segmentation models.
- Score: 33.336549577936196
- License:
- Abstract: Weakly-Supervised Semantic Segmentation (WSSS) aims to train segmentation models using image data with only image-level supervision. Since precise pixel-level annotations are not accessible, existing methods typically focus on producing pseudo masks for training segmentation models by refining CAM-like heatmaps. However, the produced heatmaps may capture only the discriminative image regions of object categories or the associated co-occurring backgrounds. To address the issues, we propose a Semantic Prompt Learning for WSSS (SemPLeS) framework, which learns to effectively prompt the CLIP latent space to enhance the semantic alignment between the segmented regions and the target object categories. More specifically, we propose Contrastive Prompt Learning and Prompt-guided Semantic Refinement to learn the prompts that adequately describe and suppress the co-occurring backgrounds associated with each object category. In this way, SemPLeS can perform better semantic alignment between object regions and class labels, resulting in desired pseudo masks for training segmentation models. The proposed SemPLeS framework achieves competitive performance on standard WSSS benchmarks, PASCAL VOC 2012 and MS COCO 2014, and shows compatibility with other WSSS methods. Code: https://github.com/NVlabs/SemPLeS.
Related papers
- FGAseg: Fine-Grained Pixel-Text Alignment for Open-Vocabulary Semantic Segmentation [63.31007867379312]
Open-vocabulary segmentation aims to identify and segment specific regions and objects based on text-based descriptions.
A common solution is to leverage powerful vision-language models (VLMs), such as CLIP, to bridge the gap between vision and text information.
In contrast, segmentation tasks require fine-grained pixel-level alignment and detailed category boundary information.
We propose FGAseg, a model designed for fine-grained pixel-text alignment and category boundary supplementation.
arXiv Detail & Related papers (2025-01-01T15:47:04Z) - InvSeg: Test-Time Prompt Inversion for Semantic Segmentation [33.60580908728705]
InvSeg is a test-time prompt inversion method that tackles open-vocabulary semantic segmentation.
We introduce Contrastive Soft Clustering (CSC) to align derived masks with the image's structure information.
InvSeg learns context-rich text prompts in embedding space and achieves accurate semantic alignment across modalities.
arXiv Detail & Related papers (2024-10-15T10:20:31Z) - Vocabulary-free Image Classification and Semantic Segmentation [71.78089106671581]
We introduce the Vocabulary-free Image Classification (VIC) task, which aims to assign a class from an un-constrained language-induced semantic space to an input image without needing a known vocabulary.
VIC is challenging due to the vastness of the semantic space, which contains millions of concepts, including fine-grained categories.
We propose Category Search from External Databases (CaSED), a training-free method that leverages a pre-trained vision-language model and an external database.
arXiv Detail & Related papers (2024-04-16T19:27:21Z) - Auxiliary Tasks Enhanced Dual-affinity Learning for Weakly Supervised
Semantic Segmentation [79.05949524349005]
We propose AuxSegNet+, a weakly supervised auxiliary learning framework to explore the rich information from saliency maps.
We also propose a cross-task affinity learning mechanism to learn pixel-level affinities from the saliency and segmentation feature maps.
arXiv Detail & Related papers (2024-03-02T10:03:21Z) - CLIP Is Also a Good Teacher: A New Learning Framework for Inductive
Zero-shot Semantic Segmentation [6.181169909576527]
Generalized Zero-shot Semantic aims to segment both seen and unseen categories only under the supervision of the seen ones.
Existing methods adopt the large-scale Vision Language Models (VLMs) which obtain outstanding zero-shot performance.
We propose CLIP-ZSS (Zero-shot Semantic), a training framework that enables any image encoder designed for closed-set segmentation applied in zero-shot and open-vocabulary tasks.
arXiv Detail & Related papers (2023-10-03T09:33:47Z) - MixReorg: Cross-Modal Mixed Patch Reorganization is a Good Mask Learner
for Open-World Semantic Segmentation [110.09800389100599]
We propose MixReorg, a novel and straightforward pre-training paradigm for semantic segmentation.
Our approach involves generating fine-grained patch-text pairs data by mixing image patches while preserving the correspondence between patches and text.
With MixReorg as a mask learner, conventional text-supervised semantic segmentation models can achieve highly generalizable pixel-semantic alignment ability.
arXiv Detail & Related papers (2023-08-09T09:35:16Z) - Location-Aware Self-Supervised Transformers [74.76585889813207]
We propose to pretrain networks for semantic segmentation by predicting the relative location of image parts.
We control the difficulty of the task by masking a subset of the reference patch features visible to those of the query.
Our experiments show that this location-aware pretraining leads to representations that transfer competitively to several challenging semantic segmentation benchmarks.
arXiv Detail & Related papers (2022-12-05T16:24:29Z) - Causal Intervention for Weakly-Supervised Semantic Segmentation [122.1846968696862]
We aim to generate better pixel-level pseudo-masks by using only image-level labels.
We propose a structural causal model to analyze the causalities among images, contexts, and class labels.
Based on it, we develop a new method: Context Adjustment (CONTA), to remove the confounding bias in image-level classification.
arXiv Detail & Related papers (2020-09-26T09:26:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.