MOSformer: Momentum encoder-based inter-slice fusion transformer for
medical image segmentation
- URL: http://arxiv.org/abs/2401.11856v1
- Date: Mon, 22 Jan 2024 11:25:59 GMT
- Title: MOSformer: Momentum encoder-based inter-slice fusion transformer for
medical image segmentation
- Authors: De-Xing Huang and Xiao-Hu Zhou and Xiao-Liang Xie and Shi-Qi Liu and
Zhen-Qiu Feng and Mei-Jiang Gui and Hao Li and Tian-Yu Xiang and Xiu-Ling Liu
and Zeng-Guang Hou
- Abstract summary: 2.5D-based segmentation models often treat each slice equally, failing to effectively learn and exploit inter-slice information.
A novel Momentum encoder-based inter-slice fusion transformer (MOSformer) is proposed to overcome this issue.
The MOSformer is evaluated on three benchmark datasets (Synapse, ACDC, and AMOS), establishing a new state-of-the-art with 85.63%, 92.19%, and 85.43% of DSC, respectively.
- Score: 15.94370954641629
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Medical image segmentation takes an important position in various clinical
applications. Deep learning has emerged as the predominant solution for
automated segmentation of volumetric medical images. 2.5D-based segmentation
models bridge computational efficiency of 2D-based models and spatial
perception capabilities of 3D-based models. However, prevailing 2.5D-based
models often treat each slice equally, failing to effectively learn and exploit
inter-slice information, resulting in suboptimal segmentation performances. In
this paper, a novel Momentum encoder-based inter-slice fusion transformer
(MOSformer) is proposed to overcome this issue by leveraging inter-slice
information at multi-scale feature maps extracted by different encoders.
Specifically, dual encoders are employed to enhance feature distinguishability
among different slices. One of the encoders is moving-averaged to maintain the
consistency of slice representations. Moreover, an IF-Swin transformer module
is developed to fuse inter-slice multi-scale features. The MOSformer is
evaluated on three benchmark datasets (Synapse, ACDC, and AMOS), establishing a
new state-of-the-art with 85.63%, 92.19%, and 85.43% of DSC, respectively.
These promising results indicate its competitiveness in medical image
segmentation. Codes and models of MOSformer will be made publicly available
upon acceptance.
Related papers
- Prototype Learning Guided Hybrid Network for Breast Tumor Segmentation in DCE-MRI [58.809276442508256]
We propose a hybrid network via the combination of convolution neural network (CNN) and transformer layers.
The experimental results on private and public DCE-MRI datasets demonstrate that the proposed hybrid network superior performance than the state-of-the-art methods.
arXiv Detail & Related papers (2024-08-11T15:46:00Z) - SDR-Former: A Siamese Dual-Resolution Transformer for Liver Lesion
Classification Using 3D Multi-Phase Imaging [59.78761085714715]
This study proposes a novel Siamese Dual-Resolution Transformer (SDR-Former) framework for liver lesion classification.
The proposed framework has been validated through comprehensive experiments on two clinical datasets.
To support the scientific community, we are releasing our extensive multi-phase MR dataset for liver lesion analysis to the public.
arXiv Detail & Related papers (2024-02-27T06:32:56Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - SeUNet-Trans: A Simple yet Effective UNet-Transformer Model for Medical
Image Segmentation [0.0]
We propose a simple yet effective UNet-Transformer (seUNet-Trans) model for medical image segmentation.
In our approach, the UNet model is designed as a feature extractor to generate multiple feature maps from the input images.
By leveraging the UNet architecture and the self-attention mechanism, our model not only retains the preservation of both local and global context information but also is capable of capturing long-range dependencies between input elements.
arXiv Detail & Related papers (2023-10-16T01:13:38Z) - Multi-dimension unified Swin Transformer for 3D Lesion Segmentation in
Multiple Anatomical Locations [1.7413461132662074]
We propose a novel model, denoted a multi-dimension unified Swin transformer (MDU-ST) for 3D lesion segmentation.
The network's performance is evaluated by the Dice similarity coefficient (DSC) and Hausdorff distance (HD) using an internal 3D lesion dataset.
The proposed method can be used to conduct automated 3D lesion segmentation to assist radiomics and tumor growth modeling studies.
arXiv Detail & Related papers (2023-09-04T21:24:00Z) - 3DSAM-adapter: Holistic adaptation of SAM from 2D to 3D for promptable tumor segmentation [52.699139151447945]
We propose a novel adaptation method for transferring the segment anything model (SAM) from 2D to 3D for promptable medical image segmentation.
Our model can outperform domain state-of-the-art medical image segmentation models on 3 out of 4 tasks, specifically by 8.25%, 29.87%, and 10.11% for kidney tumor, pancreas tumor, colon cancer segmentation, and achieve similar performance for liver tumor segmentation.
arXiv Detail & Related papers (2023-06-23T12:09:52Z) - MedSegDiff-V2: Diffusion based Medical Image Segmentation with
Transformer [53.575573940055335]
We propose a novel Transformer-based Diffusion framework, called MedSegDiff-V2.
We verify its effectiveness on 20 medical image segmentation tasks with different image modalities.
arXiv Detail & Related papers (2023-01-19T03:42:36Z) - MISSU: 3D Medical Image Segmentation via Self-distilling TransUNet [55.16833099336073]
We propose to self-distill a Transformer-based UNet for medical image segmentation.
It simultaneously learns global semantic information and local spatial-detailed features.
Our MISSU achieves the best performance over previous state-of-the-art methods.
arXiv Detail & Related papers (2022-06-02T07:38:53Z) - Class-Aware Generative Adversarial Transformers for Medical Image
Segmentation [39.14169989603906]
We present CA-GANformer, a novel type of generative adversarial transformers, for medical image segmentation.
First, we take advantage of the pyramid structure to construct multi-scale representations and handle multi-scale variations.
We then design a novel class-aware transformer module to better learn the discriminative regions of objects with semantic structures.
arXiv Detail & Related papers (2022-01-26T03:50:02Z) - Swin UNETR: Swin Transformers for Semantic Segmentation of Brain Tumors
in MRI Images [7.334185314342017]
We propose a novel segmentation model termed Swin UNEt TRansformers (Swin UNETR)
The model extracts features at five different resolutions by utilizing shifted windows for computing self-attention.
We have participated in BraTS 2021 segmentation challenge, and our proposed model ranks among the top-performing approaches in the validation phase.
arXiv Detail & Related papers (2022-01-04T18:01:34Z) - Atrous Residual Interconnected Encoder to Attention Decoder Framework
for Vertebrae Segmentation via 3D Volumetric CT Images [1.8146155083014204]
This paper proposes a novel algorithm for automated vertebrae segmentation via 3D volumetric spine CT images.
The proposed model is based on the structure of encoder to decoder, using layer normalization to optimize mini-batch training performance.
The experimental results show that our model achieves competitive performance compared with other state-of-the-art medical semantic segmentation methods.
arXiv Detail & Related papers (2021-04-08T12:09:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.