Assessing the Efficacy of Deep Learning Approaches for Facial Expression Recognition in Individuals with Intellectual Disabilities
- URL: http://arxiv.org/abs/2401.11877v2
- Date: Wed, 29 May 2024 14:23:08 GMT
- Title: Assessing the Efficacy of Deep Learning Approaches for Facial Expression Recognition in Individuals with Intellectual Disabilities
- Authors: F. Xavier Gaya-Morey, Silvia Ramis, Jose M. Buades-Rubio, Cristina Manresa-Yee,
- Abstract summary: We train a set of 12 convolutional neural networks in different approaches to recognize facial expressions in individuals with intellectual disabilities.
Our findings show the need of facial expression recognition within this population through tailored user-specific training methodologies.
- Score: 0.7124736158080939
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Facial expression recognition has gained significance as a means of imparting social robots with the capacity to discern the emotional states of users. The use of social robotics includes a variety of settings, including homes, nursing homes or daycare centers, serving to a wide range of users. Remarkable performance has been achieved by deep learning approaches, however, its direct use for recognizing facial expressions in individuals with intellectual disabilities has not been yet studied in the literature, to the best of our knowledge. To address this objective, we train a set of 12 convolutional neural networks in different approaches, including an ensemble of datasets without individuals with intellectual disabilities and a dataset featuring such individuals. Our examination of the outcomes, both the performance and the important image regions for the models, reveals significant distinctions in facial expressions between individuals with and without intellectual disabilities, as well as among individuals with intellectual disabilities. Remarkably, our findings show the need of facial expression recognition within this population through tailored user-specific training methodologies, which enable the models to effectively address the unique expressions of each user.
Related papers
- CIAO! A Contrastive Adaptation Mechanism for Non-Universal Facial
Expression Recognition [80.07590100872548]
We propose Contrastive Inhibitory Adaptati On (CIAO), a mechanism that adapts the last layer of facial encoders to depict specific affective characteristics on different datasets.
CIAO presents an improvement in facial expression recognition performance over six different datasets with very unique affective representations.
arXiv Detail & Related papers (2022-08-10T15:46:05Z) - Learning Graph Representation of Person-specific Cognitive Processes
from Audio-visual Behaviours for Automatic Personality Recognition [17.428626029689653]
We propose to represent the target subjects person-specific cognition in the form of a person-specific CNN architecture.
Each person-specific CNN is explored by the Neural Architecture Search (NAS) and a novel adaptive loss function.
Experimental results show that the produced graph representations are well associated with target subjects' personality traits.
arXiv Detail & Related papers (2021-10-26T11:04:23Z) - A Multi-resolution Approach to Expression Recognition in the Wild [9.118706387430883]
We propose a multi-resolution approach to solve the Facial Expression Recognition task.
We ground our intuition on the observation that often faces images are acquired at different resolutions.
To our aim, we use a ResNet-like architecture, equipped with Squeeze-and-Excitation blocks, trained on the Affect-in-the-Wild 2 dataset.
arXiv Detail & Related papers (2021-03-09T21:21:02Z) - Facial Expressions as a Vulnerability in Face Recognition [73.85525896663371]
This work explores facial expression bias as a security vulnerability of face recognition systems.
We present a comprehensive analysis of how facial expression bias impacts the performance of face recognition technologies.
arXiv Detail & Related papers (2020-11-17T18:12:41Z) - Introducing Representations of Facial Affect in Automated Multimodal
Deception Detection [18.16596562087374]
Automated deception detection systems can enhance health, justice, and security in society.
This paper presents a novel analysis of the power of dimensional representations of facial affect for automated deception detection.
We used a video dataset of people communicating truthfully or deceptively in real-world, high-stakes courtroom situations.
arXiv Detail & Related papers (2020-08-31T05:12:57Z) - Occlusion-Adaptive Deep Network for Robust Facial Expression Recognition [56.11054589916299]
We propose a landmark-guided attention branch to find and discard corrupted features from occluded regions.
An attention map is first generated to indicate if a specific facial part is occluded and guide our model to attend to non-occluded regions.
This results in more diverse and discriminative features, enabling the expression recognition system to recover even though the face is partially occluded.
arXiv Detail & Related papers (2020-05-12T20:42:55Z) - Continuous Emotion Recognition via Deep Convolutional Autoencoder and
Support Vector Regressor [70.2226417364135]
It is crucial that the machine should be able to recognize the emotional state of the user with high accuracy.
Deep neural networks have been used with great success in recognizing emotions.
We present a new model for continuous emotion recognition based on facial expression recognition.
arXiv Detail & Related papers (2020-01-31T17:47:16Z) - Learning to Augment Expressions for Few-shot Fine-grained Facial
Expression Recognition [98.83578105374535]
We present a novel Fine-grained Facial Expression Database - F2ED.
It includes more than 200k images with 54 facial expressions from 119 persons.
Considering the phenomenon of uneven data distribution and lack of samples is common in real-world scenarios, we evaluate several tasks of few-shot expression learning.
We propose a unified task-driven framework - Compositional Generative Adversarial Network (Comp-GAN) learning to synthesize facial images.
arXiv Detail & Related papers (2020-01-17T03:26:32Z) - An adversarial learning framework for preserving users' anonymity in
face-based emotion recognition [6.9581841997309475]
This paper proposes an adversarial learning framework which relies on a convolutional neural network (CNN) architecture trained through an iterative procedure.
Results indicate that the proposed approach can learn a convolutional transformation for preserving emotion recognition accuracy and degrading face identity recognition.
arXiv Detail & Related papers (2020-01-16T22:45:52Z) - Investigating the Impact of Inclusion in Face Recognition Training Data
on Individual Face Identification [93.5538147928669]
We audit ArcFace, a state-of-the-art, open source face recognition system, in a large-scale face identification experiment with more than one million distractor images.
We find a Rank-1 face identification accuracy of 79.71% for individuals present in the model's training data and an accuracy of 75.73% for those not present.
arXiv Detail & Related papers (2020-01-09T15:50:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.