Scaling Face Interaction Graph Networks to Real World Scenes
- URL: http://arxiv.org/abs/2401.11985v1
- Date: Mon, 22 Jan 2024 14:38:25 GMT
- Title: Scaling Face Interaction Graph Networks to Real World Scenes
- Authors: Tatiana Lopez-Guevara, Yulia Rubanova, William F. Whitney, Tobias
Pfaff, Kimberly Stachenfeld, Kelsey R. Allen
- Abstract summary: We introduce a method which substantially reduces the memory required to run graph-based learned simulators.
We show that our method uses substantially less memory than previous graph-based simulators while retaining their accuracy.
This paves the way for expanding the application of learned simulators to settings where only perceptual information is available at inference time.
- Score: 12.519862235430153
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurately simulating real world object dynamics is essential for various
applications such as robotics, engineering, graphics, and design. To better
capture complex real dynamics such as contact and friction, learned simulators
based on graph networks have recently shown great promise. However, applying
these learned simulators to real scenes comes with two major challenges: first,
scaling learned simulators to handle the complexity of real world scenes which
can involve hundreds of objects each with complicated 3D shapes, and second,
handling inputs from perception rather than 3D state information. Here we
introduce a method which substantially reduces the memory required to run
graph-based learned simulators. Based on this memory-efficient simulation
model, we then present a perceptual interface in the form of editable NeRFs
which can convert real-world scenes into a structured representation that can
be processed by graph network simulator. We show that our method uses
substantially less memory than previous graph-based simulators while retaining
their accuracy, and that the simulators learned in synthetic environments can
be applied to real world scenes captured from multiple camera angles. This
paves the way for expanding the application of learned simulators to settings
where only perceptual information is available at inference time.
Related papers
- Learning rigid-body simulators over implicit shapes for large-scale scenes and vision [11.815473102158368]
We present SDF-Sim, the first learned rigid-body simulator designed for scale.
We use learned signed-distance functions (SDFs) to represent the object shapes and to speed up distance computation.
For the first time in literature, we demonstrate that we can scale the GNN-based simulators to scenes with hundreds of objects and up to 1.1 million nodes.
arXiv Detail & Related papers (2024-05-22T22:32:04Z) - URDFormer: A Pipeline for Constructing Articulated Simulation Environments from Real-World Images [39.0780707100513]
We present an integrated end-to-end pipeline that generates simulation scenes complete with articulated kinematic and dynamic structures from real-world images.
In doing so, our work provides both a pipeline for large-scale generation of simulation environments and an integrated system for training robust robotic control policies.
arXiv Detail & Related papers (2024-05-19T20:01:29Z) - Closing the Visual Sim-to-Real Gap with Object-Composable NeRFs [59.12526668734703]
We introduce Composable Object Volume NeRF (COV-NeRF), an object-composable NeRF model that is the centerpiece of a real-to-sim pipeline.
COV-NeRF extracts objects from real images and composes them into new scenes, generating photorealistic renderings and many types of 2D and 3D supervision.
arXiv Detail & Related papers (2024-03-07T00:00:02Z) - Learning 3D Particle-based Simulators from RGB-D Videos [15.683877597215494]
We propose a method for learning simulators directly from observations.
Visual Particle Dynamics (VPD) jointly learns a latent particle-based representation of 3D scenes.
Unlike existing 2D video prediction models, VPD's 3D structure enables scene editing and long-term predictions.
arXiv Detail & Related papers (2023-12-08T20:45:34Z) - Learning Interactive Real-World Simulators [96.5991333400566]
We explore the possibility of learning a universal simulator of real-world interaction through generative modeling.
We use the simulator to train both high-level vision-language policies and low-level reinforcement learning policies.
Video captioning models can benefit from training with simulated experience, opening up even wider applications.
arXiv Detail & Related papers (2023-10-09T19:42:22Z) - Towards Optimal Strategies for Training Self-Driving Perception Models
in Simulation [98.51313127382937]
We focus on the use of labels in the synthetic domain alone.
Our approach introduces both a way to learn neural-invariant representations and a theoretically inspired view on how to sample the data from the simulator.
We showcase our approach on the bird's-eye-view vehicle segmentation task with multi-sensor data.
arXiv Detail & Related papers (2021-11-15T18:37:43Z) - DriveGAN: Towards a Controllable High-Quality Neural Simulation [147.6822288981004]
We introduce a novel high-quality neural simulator referred to as DriveGAN.
DriveGAN achieves controllability by disentangling different components without supervision.
We train DriveGAN on multiple datasets, including 160 hours of real-world driving data.
arXiv Detail & Related papers (2021-04-30T15:30:05Z) - GeoSim: Photorealistic Image Simulation with Geometry-Aware Composition [81.24107630746508]
We present GeoSim, a geometry-aware image composition process that synthesizes novel urban driving scenes.
We first build a diverse bank of 3D objects with both realistic geometry and appearance from sensor data.
The resulting synthetic images are photorealistic, traffic-aware, and geometrically consistent, allowing image simulation to scale to complex use cases.
arXiv Detail & Related papers (2021-01-16T23:00:33Z) - Stillleben: Realistic Scene Synthesis for Deep Learning in Robotics [33.30312206728974]
We describe a synthesis pipeline capable of producing training data for cluttered scene perception tasks.
Our approach arranges object meshes in physically realistic, dense scenes using physics simulation.
Our pipeline can be run online during training of a deep neural network.
arXiv Detail & Related papers (2020-05-12T10:11:00Z) - SimAug: Learning Robust Representations from Simulation for Trajectory
Prediction [78.91518036949918]
We propose a novel approach to learn robust representation through augmenting the simulation training data.
We show that SimAug achieves promising results on three real-world benchmarks using zero real training data.
arXiv Detail & Related papers (2020-04-04T21:22:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.