Multi-agent deep reinforcement learning with centralized training and
decentralized execution for transportation infrastructure management
- URL: http://arxiv.org/abs/2401.12455v1
- Date: Tue, 23 Jan 2024 02:52:36 GMT
- Title: Multi-agent deep reinforcement learning with centralized training and
decentralized execution for transportation infrastructure management
- Authors: M. Saifullah, K.G. Papakonstantinou, C.P. Andriotis, S.M. Stoffels
- Abstract summary: We present a multi-agent Deep Reinforcement Learning (DRL) framework for managing large transportation infrastructure systems over their life-cycle.
Life-cycle management of such engineering systems is a computationally intensive task, requiring appropriate sequential inspection and maintenance decisions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a multi-agent Deep Reinforcement Learning (DRL) framework for
managing large transportation infrastructure systems over their life-cycle.
Life-cycle management of such engineering systems is a computationally
intensive task, requiring appropriate sequential inspection and maintenance
decisions able to reduce long-term risks and costs, while dealing with
different uncertainties and constraints that lie in high-dimensional spaces. To
date, static age- or condition-based maintenance methods and risk-based or
periodic inspection plans have mostly addressed this class of optimization
problems. However, optimality, scalability, and uncertainty limitations are
often manifested under such approaches. The optimization problem in this work
is cast in the framework of constrained Partially Observable Markov Decision
Processes (POMDPs), which provides a comprehensive mathematical basis for
stochastic sequential decision settings with observation uncertainties, risk
considerations, and limited resources. To address significantly large state and
action spaces, a Deep Decentralized Multi-agent Actor-Critic (DDMAC) DRL method
with Centralized Training and Decentralized Execution (CTDE), termed as
DDMAC-CTDE is developed. The performance strengths of the DDMAC-CTDE method are
demonstrated in a generally representative and realistic example application of
an existing transportation network in Virginia, USA. The network includes
several bridge and pavement components with nonstationary degradation,
agency-imposed constraints, and traffic delay and risk considerations. Compared
to traditional management policies for transportation networks, the proposed
DDMAC-CTDE method vastly outperforms its counterparts. Overall, the proposed
algorithmic framework provides near optimal solutions for transportation
infrastructure management under real-world constraints and complexities.
Related papers
- Two-Stage ML-Guided Decision Rules for Sequential Decision Making under Uncertainty [55.06411438416805]
Sequential Decision Making under Uncertainty (SDMU) is ubiquitous in many domains such as energy, finance, and supply chains.
Some SDMU are naturally modeled as Multistage Problems (MSPs) but the resulting optimizations are notoriously challenging from a computational standpoint.
This paper introduces a novel approach Two-Stage General Decision Rules (TS-GDR) to generalize the policy space beyond linear functions.
The effectiveness of TS-GDR is demonstrated through an instantiation using Deep Recurrent Neural Networks named Two-Stage Deep Decision Rules (TS-LDR)
arXiv Detail & Related papers (2024-05-23T18:19:47Z) - Decentralized Learning Strategies for Estimation Error Minimization with Graph Neural Networks [94.2860766709971]
We address the challenge of sampling and remote estimation for autoregressive Markovian processes in a wireless network with statistically-identical agents.
Our goal is to minimize time-average estimation error and/or age of information with decentralized scalable sampling and transmission policies.
arXiv Detail & Related papers (2024-04-04T06:24:11Z) - Multi-objective Optimal Roadside Units Deployment in Urban Vehicular Networks [7.951541004150428]
The significance of transportation efficiency, safety, and related services is increasing in urban vehicular networks.
Within such networks, roadside units (RSUs) serve as intermediates in facilitating communication.
In urban environments, the presence of various obstacles, such as buildings, gardens, lakes, and other infrastructure, poses challenges for the deployment of RSUs.
arXiv Detail & Related papers (2024-01-14T05:02:12Z) - A Constraint Enforcement Deep Reinforcement Learning Framework for
Optimal Energy Storage Systems Dispatch [0.0]
The optimal dispatch of energy storage systems (ESSs) presents formidable challenges due to fluctuations in dynamic prices, demand consumption, and renewable-based energy generation.
By exploiting the generalization capabilities of deep neural networks (DNNs), deep reinforcement learning (DRL) algorithms can learn good-quality control models that adaptively respond to distribution networks' nature.
We propose a DRL framework that effectively handles continuous action spaces while strictly enforcing the environments and action space operational constraints during online operation.
arXiv Detail & Related papers (2023-07-26T17:12:04Z) - Inference and dynamic decision-making for deteriorating systems with
probabilistic dependencies through Bayesian networks and deep reinforcement
learning [0.0]
We propose an efficient algorithmic framework for inference and decision-making under uncertainty for engineering systems exposed to deteriorating environments.
In terms of policy optimization, we adopt a deep decentralized multi-agent actor-critic (DDMAC) reinforcement learning approach.
Results demonstrate that DDMAC policies offer substantial benefits when compared to state-of-the-art approaches.
arXiv Detail & Related papers (2022-09-02T14:45:40Z) - Artificial Intelligence Empowered Multiple Access for Ultra Reliable and
Low Latency THz Wireless Networks [76.89730672544216]
Terahertz (THz) wireless networks are expected to catalyze the beyond fifth generation (B5G) era.
To satisfy the ultra-reliability and low-latency demands of several B5G applications, novel mobility management approaches are required.
This article presents a holistic MAC layer approach that enables intelligent user association and resource allocation, as well as flexible and adaptive mobility management.
arXiv Detail & Related papers (2022-08-17T03:00:24Z) - Reinforcement Learning-Empowered Mobile Edge Computing for 6G Edge
Intelligence [76.96698721128406]
Mobile edge computing (MEC) considered a novel paradigm for computation and delay-sensitive tasks in fifth generation (5G) networks and beyond.
This paper provides a comprehensive research review on free-enabled RL and offers insight for development.
arXiv Detail & Related papers (2022-01-27T10:02:54Z) - Semantic-Aware Collaborative Deep Reinforcement Learning Over Wireless
Cellular Networks [82.02891936174221]
Collaborative deep reinforcement learning (CDRL) algorithms in which multiple agents can coordinate over a wireless network is a promising approach.
In this paper, a novel semantic-aware CDRL method is proposed to enable a group of untrained agents with semantically-linked DRL tasks to collaborate efficiently across a resource-constrained wireless cellular network.
arXiv Detail & Related papers (2021-11-23T18:24:47Z) - A Modular and Transferable Reinforcement Learning Framework for the
Fleet Rebalancing Problem [2.299872239734834]
We propose a modular framework for fleet rebalancing based on model-free reinforcement learning (RL)
We formulate RL state and action spaces as distributions over a grid of the operating area, making the framework scalable.
Numerical experiments, using real-world trip and network data, demonstrate that this approach has several distinct advantages over baseline methods.
arXiv Detail & Related papers (2021-05-27T16:32:28Z) - Deep reinforcement learning driven inspection and maintenance planning
under incomplete information and constraints [0.0]
Determination of inspection and maintenance policies constitutes a complex optimization problem.
In this work, these challenges are addressed within a joint framework of constrained Partially Observable Decision Processes (POMDP) and multi-agent Deep Reinforcement Learning (DRL)
The proposed framework is found to outperform well-established policy baselines and facilitate adept prescription of inspection and intervention actions.
arXiv Detail & Related papers (2020-07-02T20:44:07Z) - Decentralized MCTS via Learned Teammate Models [89.24858306636816]
We present a trainable online decentralized planning algorithm based on decentralized Monte Carlo Tree Search.
We show that deep learning and convolutional neural networks can be employed to produce accurate policy approximators.
arXiv Detail & Related papers (2020-03-19T13:10:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.