DiffMoog: a Differentiable Modular Synthesizer for Sound Matching
- URL: http://arxiv.org/abs/2401.12570v1
- Date: Tue, 23 Jan 2024 08:59:21 GMT
- Title: DiffMoog: a Differentiable Modular Synthesizer for Sound Matching
- Authors: Noy Uzrad, Oren Barkan, Almog Elharar, Shlomi Shvartzman, Moshe
Laufer, Lior Wolf, Noam Koenigstein
- Abstract summary: DiffMoog is a differentiable modular synthesizer with a comprehensive set of modules typically found in commercial instruments.
Being differentiable, it allows integration into neural networks, enabling automated sound matching.
We introduce an open-source platform that comprises DiffMoog and an end-to-end sound matching framework.
- Score: 48.33168531500444
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents DiffMoog - a differentiable modular synthesizer with a
comprehensive set of modules typically found in commercial instruments. Being
differentiable, it allows integration into neural networks, enabling automated
sound matching, to replicate a given audio input. Notably, DiffMoog facilitates
modulation capabilities (FM/AM), low-frequency oscillators (LFOs), filters,
envelope shapers, and the ability for users to create custom signal chains. We
introduce an open-source platform that comprises DiffMoog and an end-to-end
sound matching framework. This framework utilizes a novel signal-chain loss and
an encoder network that self-programs its outputs to predict DiffMoogs
parameters based on the user-defined modular architecture. Moreover, we provide
insights and lessons learned towards sound matching using differentiable
synthesis. Combining robust sound capabilities with a holistic platform,
DiffMoog stands as a premier asset for expediting research in audio synthesis
and machine learning.
Related papers
- Robust AI-Synthesized Speech Detection Using Feature Decomposition Learning and Synthesizer Feature Augmentation [52.0893266767733]
We propose a robust deepfake speech detection method that employs feature decomposition to learn synthesizer-independent content features.
To enhance the model's robustness to different synthesizer characteristics, we propose a synthesizer feature augmentation strategy.
arXiv Detail & Related papers (2024-11-14T03:57:21Z) - Synthesizer Sound Matching Using Audio Spectrogram Transformers [2.5944208050492183]
We introduce a synthesizer sound matching model based on the Audio Spectrogram Transformer.
We show that this model can reconstruct parameters of samples generated from a set of 16 parameters.
We also provide audio examples demonstrating the out-of-domain model performance in emulating vocal imitations.
arXiv Detail & Related papers (2024-07-23T16:58:14Z) - NAS-FM: Neural Architecture Search for Tunable and Interpretable Sound
Synthesis based on Frequency Modulation [38.00669627261736]
We propose NAS-FM'', which adopts neural architecture search (NAS) to build a differentiable frequency modulation (FM) synthesizer.
Tunable synthesizers with interpretable controls can be developed automatically from sounds without any prior expert knowledge.
arXiv Detail & Related papers (2023-05-22T09:46:10Z) - Synthesizer Preset Interpolation using Transformer Auto-Encoders [4.213427823201119]
We introduce a bimodal auto-encoder neural network, which simultaneously processes presets using multi-head attention blocks, and audio using convolutions.
This model has been tested on a popular frequency modulation synthesizer with more than one hundred parameters.
After training, the proposed model can be integrated into commercial synthesizers for live or sound design tasks.
arXiv Detail & Related papers (2022-10-27T15:20:18Z) - DDX7: Differentiable FM Synthesis of Musical Instrument Sounds [7.829520196474829]
Differentiable Digital Signal Processing (DDSP) has enabled nuanced audio rendering by Deep Neural Networks (DNNs)
We present Differentiable DX7 (DDX7), a lightweight architecture for neural FM resynthesis of musical instrument sounds.
arXiv Detail & Related papers (2022-08-12T08:39:45Z) - Multi-instrument Music Synthesis with Spectrogram Diffusion [19.81982315173444]
We focus on a middle ground of neural synthesizers that can generate audio from MIDI sequences with arbitrary combinations of instruments in realtime.
We use a simple two-stage process: MIDI to spectrograms with an encoder-decoder Transformer, then spectrograms to audio with a generative adversarial network (GAN) spectrogram inverter.
We find this to be a promising first step towards interactive and expressive neural synthesis for arbitrary combinations of instruments and notes.
arXiv Detail & Related papers (2022-06-11T03:26:15Z) - NeuralDPS: Neural Deterministic Plus Stochastic Model with Multiband
Excitation for Noise-Controllable Waveform Generation [67.96138567288197]
We propose a novel neural vocoder named NeuralDPS which can retain high speech quality and acquire high synthesis efficiency and noise controllability.
It generates waveforms at least 280 times faster than the WaveNet vocoder.
It is also 28% faster than WaveGAN's synthesis efficiency on a single core.
arXiv Detail & Related papers (2022-03-05T08:15:29Z) - Any-to-Many Voice Conversion with Location-Relative Sequence-to-Sequence
Modeling [61.351967629600594]
This paper proposes an any-to-many location-relative, sequence-to-sequence (seq2seq), non-parallel voice conversion approach.
In this approach, we combine a bottle-neck feature extractor (BNE) with a seq2seq synthesis module.
Objective and subjective evaluations show that the proposed any-to-many approach has superior voice conversion performance in terms of both naturalness and speaker similarity.
arXiv Detail & Related papers (2020-09-06T13:01:06Z) - Vector-Quantized Timbre Representation [53.828476137089325]
This paper targets a more flexible synthesis of an individual timbre by learning an approximate decomposition of its spectral properties with a set of generative features.
We introduce an auto-encoder with a discrete latent space that is disentangled from loudness in order to learn a quantized representation of a given timbre distribution.
We detail results for translating audio between orchestral instruments and singing voice, as well as transfers from vocal imitations to instruments.
arXiv Detail & Related papers (2020-07-13T12:35:45Z) - VaPar Synth -- A Variational Parametric Model for Audio Synthesis [78.3405844354125]
We present VaPar Synth - a Variational Parametric Synthesizer which utilizes a conditional variational autoencoder (CVAE) trained on a suitable parametric representation.
We demonstrate our proposed model's capabilities via the reconstruction and generation of instrumental tones with flexible control over their pitch.
arXiv Detail & Related papers (2020-03-30T16:05:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.